运筹优化学习10:分支定界算法求解整数规划问题及其Matlab实现(下)

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: 运筹优化学习10:分支定界算法求解整数规划问题及其Matlab实现

3.3 C++伪代码

// C++实现分支定界算法的伪代码 
// 函数功能:我们要求一个最小化问题的最优解
//输入参数:problem            组合优化问题
//        objective_function    目标函数值
//        lower_bound_function    问题的下界
CombinatorialSolution branch_and_bound_solve(
    CombinatorialProblem problem, 
    ObjectiveFunction objective_function /*f*/,
    BoundingFunction lower_bound_function /*g*/) 
{
    // Step 1 above
    double problem_upper_bound = std::numeric_limits<double>::infinity; // = B,设置正无穷无穷对问题的上界进行初始化
    CombinatorialSolution heuristic_solution = heuristic_solve(problem); // x_h,启发式算法得到初始解
    problem_upper_bound = objective_function(heuristic_solution); // B = f(x_h),将启发式算法得到的解作为问题的上界
    CombinatorialSolution current_optimum = heuristic_solution;//设置启发算法的解为当前最优解
    // Step 2 above
    queue<CandidateSolutionTree> candidate_queue;
    // problem-specific queue initialization
    candidate_queue = populate_candidates(problem);
    while (!candidate_queue.empty()) { // Step 3 above
        // Step 3.1
        CandidateSolutionTree node = candidate_queue.pop();
        // "node" represents N above
        if (node.represents_single_candidate()) {
        // Step 3.2 如果node是一个候选解,判断其是否小于当前上界,若是则更新上界;否则他就不是最优解,就要停止分支
            if (objective_function(node.candidate()) < problem_upper_bound) {
                current_optimum = node.candidate();
                problem_upper_bound = objective_function(current_optimum);
            }
            // else, node is a single candidate which is not optimum
        }
        else { 
            // Step 3.3: node represents a branch of candidate solutions
            // "child_branch" represents N_i above
            for (auto&& child_branch : node.candidate_nodes) {
                if (lower_bound_function(child_branch) <= problem_upper_bound) {
                    candidate_queue.enqueue(child_branch); // Step 3.3.2
                }
                // otherwise, g(N_i) > B so we prune the branch; step 3.3.1
                //如果得到一个更差的解,我们就放弃该分支
            }
        }
    }
    return current_optimum;
}

4 一个Matlab的实现示例

4.1 linprog函数使用详解

这里调用了Matlab的linprog函数,完整的函数说明文档可在Matlab中输入如下指令:

doc linprog


得到如下界面:

20191011230150688.png

可知,该函数可以求解线性规划问题,设计到的参数说明:

image.png

image.png

其中的options参数:

20191011230633601.png

exitflag参数:

image.png

4.2 一个Matlab求解的代码示例解析

分支定界函数

function [x,val]=kfz(n,f,a,b,aeq,beq,lb,ub)
%获取变量个数的向量
x=zeros(n,1);
% x1=zeros(n,1);
m1=2;
m2=1;
%嗲用lingprog得到线性规划问题的最优解
[x1,val1]=linprog(f,a,b,aeq,beq,lb,ub)
if (x1==0)
    x=x1;
    val=val1
elseif (round(x1)==x1)%线性问题的最优解都是整数,则它也是原问题的最优解
    x=x1;
    val=val1
else
    e1={0,a,b,aeq,beq,lb,ub,x1,val1};
    e(1,1)={e1};
zl=0;
zu=-val1
while (zu~=zl)
for c=1:1:m2
if (m1~=2)
if (cell2mat(e{m1-1,c}(1))==1)
e1={1,[],[],[],[],[],[],[],0};
e(m1,c*2-1)={e1};
e(m1,c*2)={e1};
continue;
end;
end;
x1=cell2mat(e{m1-1,c}(8));
x2=zeros(n,1);
s=0;
s1=1;
s2=1;
lb1=cell2mat(e{m1-1,c}(6));
ub1=cell2mat(e{m1-1,c}(7));
lb2=cell2mat(e{m1-1,c}(6));
ub2=cell2mat(e{m1-1,c}(7));
for d=1:1:n
if (abs((round(x1(d))-x1(d)))>0.0001)&(s==0)
s=1;
lb1(d)=fix(x1(d))+1
if (a*lb1<=b)
s1=0;
end;
ub2(d)=fix(x1(d))
if (a*lb2<=b)
s2=0;
end;
end;
end;
e1={s1,a,b,aeq,beq,lb1,ub1,[],0};
e2={s2,a,b,aeq,beq,lb2,ub2,[],0};
e(m1,c*2-1)={e1};
e(m1,c*2)={e2};
end;
m1=m1+1;
m2=m2*2;
for c=1:1:m2
if (cell2mat(e{m1-1,c}(1))==0)
[x1,val1]=linprog(f,cell2mat(e{m1-1,c}( 2)),cell2mat(e{m1-1,c}(3)),cell2mat(e{m1-1,c}(4)),cell2mat(e{m1-1,c}(5)),cell2mat(e{m1-1,c}(6)),cell2mat(e{m1-1,c}(7)));
e1={cell2mat(e{m1-1,c}(1)),cell2mat(e{m1-1,c}(2)),cell2mat(e{m1-1,c}(3)),cell2mat(e{m1-1,c}(4)),cell2mat(e{m1-1,c}(5)),cell2mat(e{m1-1,c}(6)),cell2mat(e{m1-1,c}(7)),x1,val1};
e(m1-1,c)={e1};
end;
z=val1;
if ((-z)<(-zl))
e1={1,[],[],[],[],[],[],[],0};
e(m1-1,c)={e1};
elseif (abs(round(x1)-x1)<=0.0001)
zl=z
end;
end;
for c=1:1:m2
if (cell2mat(e{m1-1,c}(1))==0) 
zu=cell2mat(e{m1-1,c}(9))
end;
end;
for c=1:1:m2
if (-cell2mat(e{m1-1,c}(9))>(-zu))
zu=cell2mat(e{m1-1,c}(9))
end;
end;
end;
for c=1:1:m2
if (cell2mat(e{m1-1,c}(1))==0)&(cell2mat(e{m1-1,c}(9))==zu)
x=cell2mat(e{m1-1,c}(8))
end;
end;
val=-zu;
end;

调用

f = [-1, -5];
A = [-1, 1;
    5, 6;];
b = [2; 30];
Aeq = [];
beq = [];
lb = [0; 0];
ub = [4; inf];
[x,val]=kfz(2,f,A,b,Aeq,beq,lb,ub)

结果:

>> Untitled2
Optimization terminated.
x1 =
    1.6364
    3.6364
val1 =
  -19.8182
zu =
   19.8182
lb1 =
     2
     0
ub2 =
     1
   Inf
Optimization terminated.
Optimization terminated.
zl =
  -16.0000
zu =
  -18.6667
zu =
  -16.0000
zu =
  -18.6667
lb1 =
     2
     4
ub2 =
     4
     3
zl =
  -16.0000
Optimization terminated.
zu =
  -17.4000
lb1 =
     3
     0
ub2 =
     2
     3
Optimization terminated.
Optimization terminated.
zl =
  -17.0000
zl =
  -17.0000
zl =
  -17.0000
zl =
  -17.0000
zl =
  -17.0000
zu =
  -17.0000
x =
    2.0000
    3.0000
x =
    2.0000
    3.0000
val =
   17.0000
>> 

5 参考文献

分支界定法 branch-and-bound 分析与实现

运筹学分支定界法MATLAB


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
6天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
1天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
241 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
145 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
113 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章