背景
PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的
价值产出, 将数据变成生产力.
本文将介绍PolarDB 开源版通过 rum 实现高效率搜索和高效率排序的解决方案
测试环境为macos+docker, polardb部署请参考:
为什么DBA最怕搜索需求
如果你要做个搜索功能, 用户在搜索时通常会有多个满足搜索条件的结果, 这些结果往往还需要根据其他条件进行排序, 这种搜索在一般的数据库中, 只能全表扫描实现, 性能差到极点. 随便几个查询就会把数据库CPU、内存、IO资源耗光, 影响业务. 最后一般是DBA背锅, 实际上是数据库没有好的算法和存储结构, 所以这锅有点冤枉.
根据代际转移理论, 今天我们都是提前消费未来的创造力, 而以前通过暴力(堆机器)来解决问题的方法, 放在今天必须要有更高效、节能的方式来解决.
这也是今天我想要跟大家介绍的《rum+PolarDB实现高效率搜索和高效率排序的解决方案》, 性能轻松提升70倍(大数据量性能提升还会更多). 以后有这种需求, DBA就可以硬气了.
rum的原理
rum是个倒排结构, 但是在期elements里面又增加了addon value的存储, 每个匹配的element条目再根据addon column value重新排序编排其ctid(s).
同时由于多值列本身的等值匹配较为常见, 所以rum有个变种, element可以被hash化来进行存储, 提高索引存储效率. hash化之后仅仅支持element的等值匹配, 类似的hash index也一样.
1、rum storage:
1.1、ops
k,v结构: ele,ctid(s)
1.2、addon_ops
k,v结构: ele,kv(s)
kv(s)结构: addon,ctid(s) (根据addon value构建btree)
1.3、hash_ops
k,v结构: ele_hash:ctid(s)
1.4、hash_addon_ops
k,v结构: ele_hash:kv(s)
kv(s)结构: addon:ctid(s) (根据addon value构建btree)
hash ops和hash addon ops不支持按prefix搜索ele, 因为element已经转换成hashvalue存储在索引中, 只能做等值匹配.
hash ops支持按距离排序(<=>
), 因为距离计算取决于等值匹配到的ele比例. 可以想象, 不支持有方向的排序和搜索, 例如prefix search和prefix sort (<=| and |=>
).
2、sort compute:
2.1、ele key sort:
ele distance : dist_fun(ctid , $)
2.2、addon ele sort:
addon distance : dist_fun(ctid , $)
按ele排序 或 匹配ele条件后按addon排序
hash ops可以按addon排序(prefix, 相似都支持. 包括 <=>, <=| and |=> ), 因为addon column未被hash化.
将rum部署到PolarDB中
git clone --depth 1 https://github.com/postgrespro/rum
cd rum
USE_PGXS=1 make
USE_PGXS=1 make install
USE_PGXS=1 make installcheck
[postgres@aa25c5be9681 rum]$ USE_PGXS=1 make installcheck
/home/postgres/tmp_basedir_polardb_pg_1100_bld/lib/pgxs/src/makefiles/../../src/test/regress/pg_regress --inputdir=./ --bindir='/home/postgres/tmp_basedir_polardb_pg_1100_bld/bin' --dbname=contrib_regression security rum rum_validate rum_hash ruminv timestamp orderby orderby_hash altorder altorder_hash limits int2 int4 int8 float4 float8 money oid time timetz date interval macaddr inet cidr text varchar char bytea bit varbit numeric rum_weight array
(using postmaster on 127.0.0.1, default port)
============== dropping database "contrib_regression" ==============
NOTICE: database "contrib_regression" does not exist, skipping
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== running regression test queries ==============
test security ... ok
test rum ... ok
test rum_validate ... ok
test rum_hash ... ok
test ruminv ... ok
test timestamp ... ok
test orderby ... ok
test orderby_hash ... ok
test altorder ... ok
test altorder_hash ... ok
test limits ... ok
test int2 ... ok
test int4 ... ok
test int8 ... ok
test float4 ... ok
test float8 ... ok
test money ... ok
test oid ... ok
test time ... ok
test timetz ... ok
test date ... ok
test interval ... ok
test macaddr ... ok
test inet ... ok
test cidr ... ok
test text ... ok
test varchar ... ok
test char ... ok
test bytea ... ok
test bit ... ok
test varbit ... ok
test numeric ... ok
test rum_weight ... ok
test array ... ok
===========================================================
All 34 tests passed.
POLARDB:
All 34 tests, 0 tests in ignore, 0 tests in polar ignore.
===========================================================
psql
create extension rum;
场景化讲解
画像业务、搜索业务:
- 标签匹配+权重排序
- 标签匹配+时间排序
例如文章搜索, 算法举例:
- 关注文章内容的相关性, 同时要按文章的发布时间顺序排序返回前10条.
- 关注文章内容的相关性, 同时要按文章的权重(如按广告费等计算出来的权重)顺序排序返回前10条.
1、创建测试表
create table tbl (id int, info tsvector, weight float4);
2、写入测试数据
insert into tbl select id, to_tsvector('hello i am tom lane, i love postgresql'), random()*100 from generate_series(1,100000) id;
insert into tbl select id, to_tsvector('hello i am digoal, i love polardb at aliyun at china.'), random()*100 from generate_series(1,2000) id;
3、创建rum索引, 将权重attach到rum索引的ctid(s)中.
create index on tbl using rum (info rum_tsvector_hash_addon_ops, weight) with (attach = 'weight', to = 'info');
4、使用rum高效搜索和排序
4.1、匹配字符串, 并且权重越大越好的?
select *, weight <=| '100000'::float4 from tbl where info @@ 'digoal&polardb' ORDER BY weight <=| '100000'::float4 limit 10;
id | info | weight | ?column?
------+-----------------------------------------------------------------+---------+------------------
1078 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.9273 | 99900.0727005005
877 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.8128 | 99900.187171936
118 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.8049 | 99900.1951217651
881 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.4699 | 99900.5300979614
1257 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.4317 | 99900.5682678223
459 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.3815 | 99900.6185073853
1306 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.3271 | 99900.6729354858
300 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.2863 | 99900.713722229
313 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.2731 | 99900.7268676758
618 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.2371 | 99900.7629318237
(10 rows)
select *, weight <=| '100000'::float4 from tbl where info @@ 'digoal' ORDER BY weight <=| '100000'::float4 limit 10;
id | info | weight | ?column?
------+-----------------------------------------------------------------+---------+------------------
1078 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.9273 | 99900.0727005005
877 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.8128 | 99900.187171936
118 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.8049 | 99900.1951217651
881 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.4699 | 99900.5300979614
1257 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.4317 | 99900.5682678223
459 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.3815 | 99900.6185073853
1306 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.3271 | 99900.6729354858
300 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.2863 | 99900.713722229
313 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.2731 | 99900.7268676758
618 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 99.2371 | 99900.7629318237
(10 rows)
postgres=# explain (analyze,verbose,timing,costs,buffers) select *, weight <=| '100000'::float4 from tbl where info @@ 'digoal&polardb' ORDER BY weight <=| '100000'::float4 limit 10;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=24.00..40.06 rows=3 width=48) (actual time=2.081..2.097 rows=10 loops=1)
Output: id, info, weight, ((weight <=| '100000'::real))
Buffers: shared hit=21
-> Index Scan using tbl_info_weight_idx on public.tbl (cost=24.00..40.06 rows=3 width=48) (actual time=2.079..2.093 rows=10 loops=1)
Output: id, info, weight, (weight <=| '100000'::real)
Index Cond: (tbl.info @@ '''digoal'' & ''polardb'''::tsquery)
Order By: (tbl.weight <=| '100000'::real)
Buffers: shared hit=21
Planning Time: 0.160 ms
Execution Time: 2.149 ms
(10 rows)
postgres=# explain (analyze,verbose,timing,costs,buffers) select *, weight <=| '100000'::float4 from tbl where info @@ 'digoal' ORDER BY weight <=| '100000'::float4 limit 10;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=12.00..35.81 rows=10 width=89) (actual time=1.598..1.616 rows=10 loops=1)
Output: id, info, weight, ((weight <=| '100000'::real))
Buffers: shared hit=15
-> Index Scan using tbl_info_weight_idx on public.tbl (cost=12.00..4869.90 rows=2040 width=89) (actual time=1.596..1.612 rows=10 loops=1)
Output: id, info, weight, (weight <=| '100000'::real)
Index Cond: (tbl.info @@ '''digoal'''::tsquery)
Order By: (tbl.weight <=| '100000'::real)
Buffers: shared hit=15
Planning Time: 0.104 ms
Execution Time: 1.655 ms
(10 rows)
4.2、反过来排, 权重越小越好的?
select *, weight |=> '-1'::float4 from tbl where info @@ 'digoal' ORDER BY weight |=> '-1'::float4 limit 10;
id | info | weight | ?column?
------+-----------------------------------------------------------------+-----------+------------------
554 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 0.0363963 | 1.03639627248049
192 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 0.0421133 | 1.04211333394051
757 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 0.124864 | 1.12486390769482
1855 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 0.125145 | 1.1251448392868
191 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 0.134997 | 1.1349972486496
60 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 0.179037 | 1.1790367513895
1580 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 0.21992 | 1.21991994976997
1432 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 0.244062 | 1.24406225979328
719 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 0.244155 | 1.2441546022892
81 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 0.329849 | 1.32984939217567
(10 rows)
postgres=# explain select *, weight |=> '-1'::float4 from tbl where info @@ 'digoal' ORDER BY weight |=> '-1'::float4 limit 10;
QUERY PLAN
---------------------------------------------------------------------------------------------
Limit (cost=12.00..35.53 rows=10 width=89)
-> Index Scan using tbl_info_weight_idx on tbl (cost=12.00..4955.27 rows=2101 width=89)
Index Cond: (info @@ '''digoal'''::tsquery)
Order By: (weight |=> '-1'::real)
(4 rows)
4.3、或者离某个指定权重点越近越好的?
postgres=# select *, weight <=> '50'::float4 from tbl where info @@ 'digoal' ORDER BY weight <=> '50'::float4 limit 10;
id | info | weight | ?column?
------+-----------------------------------------------------------------+---------+--------------------
38 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 49.9803 | 0.0197181701660156
1590 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 50.1099 | 0.109916687011719
1153 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 50.1187 | 0.118724822998047
884 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 50.1466 | 0.146591186523438
1329 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 50.1551 | 0.155113220214844
303 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 49.8312 | 0.168792724609375
568 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 50.1816 | 0.181587219238281
1706 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 49.8142 | 0.185768127441406
1136 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 49.8095 | 0.190475463867188
1838 | 'aliyun':9 'china':11 'digoal':4 'hello':1 'love':6 'polardb':7 | 49.7829 | 0.217105865478516
(10 rows)
postgres=# explain select *, weight <=> '50'::float4 from tbl where info @@ 'digoal' ORDER BY weight <=> '50'::float4 limit 10;
QUERY PLAN
---------------------------------------------------------------------------------------------
Limit (cost=12.00..35.53 rows=10 width=89)
-> Index Scan using tbl_info_weight_idx on tbl (cost=12.00..4955.27 rows=2101 width=89)
Index Cond: (info @@ '''digoal'''::tsquery)
Order By: (weight <=> '50'::real)
(4 rows)
如果没有rum, 那么这个搜索需要进行全表匹配, 性能非常差.
仅使用GIN则只能对多值元素进行搜索, 无法实现权重排序的索引加速, 需要回表后排序, 性能也比较差.
postgres=# select relpages from pg_class where relname='tbl';
relpages
----------
1462
(1 row)
postgres=# set enable_indexscan = off;
postgres=# set enable_bitmapscan = off;
postgres=# explain (analyze,verbose,timing,costs,buffers) select *, weight <=| '100000'::float4 from tbl where info @@ 'digoal' ORDER BY weight <=| '100000'::float4 limit 10;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------
Limit (cost=2787.65..2787.68 rows=10 width=89) (actual time=27.140..27.144 rows=10 loops=1)
Output: id, info, weight, ((weight <=| '100000'::real))
Buffers: shared hit=1462
-> Sort (cost=2787.65..2792.91 rows=2101 width=89) (actual time=27.139..27.141 rows=10 loops=1)
Output: id, info, weight, ((weight <=| '100000'::real))
Sort Key: ((tbl.weight <=| '100000'::real))
Sort Method: top-N heapsort Memory: 27kB
Buffers: shared hit=1462
-> Seq Scan on public.tbl (cost=0.00..2742.25 rows=2101 width=89) (actual time=25.883..26.810 rows=2000 loops=1)
Output: id, info, weight, (weight <=| '100000'::real)
Filter: (tbl.info @@ '''digoal'''::tsquery)
Rows Removed by Filter: 100000
Buffers: shared hit=1462
Planning Time: 0.078 ms
Execution Time: 27.171 ms
(15 rows)
rum实现了精准多值列搜索, 同时支持索引内排序, 性能最佳.
以上例子才10.2万条记录, 使用rum扫描的数据块已减少70倍, 数据量再增大, 扫描的数据块将更少, 性能提升将会更加明显.
参考
- 《重新发现PostgreSQL之美 - 9 面向多值列的倒排索引GIN|RUM》
- 《PostgreSQL RUM 索引原理》
- 《PostgreSQL 任意字段组合搜索 - rum 或 多字段 bitmapscan 对比》
- 《PostgreSQL rum 索引结构 - 比gin posting list|tree 的ctid(行号)多了addition info》
- 《PostgreSQL 相似搜索插件介绍大汇总 (cube,rum,pg_trgm,smlar,imgsmlr,pg_similarity) (rum,gin,gist)》
- 《PostgreSQL 设计优化case - 大宽表任意字段组合查询索引如何选择(btree, gin, rum) - (含单个索引列数超过32列的方法)》
- 《PostgreSQL ADHoc(任意字段组合)查询(rums索引加速) - 非字典化,普通、数组等组合字段生成新数组》
- 《PostgreSQL ADHoc(任意字段组合)查询 与 字典化 (rum索引加速) - 实践与方案1 - 菜鸟 某仿真系统》
- 《PostgreSQL结合余弦、线性相关算法 在文本、图片、数组相似 等领域的应用 - 3 rum, smlar应用场景分析》
- 《从难缠的模糊查询聊开 - PostgreSQL独门绝招之一 GIN , GiST , SP-GiST , RUM 索引原理与技术背景》
- 《PostgreSQL 全文检索加速 快到没有朋友 - RUM索引接口(潘多拉魔盒)》
- [《[直播]为什么饿了么网上订餐不会凉凉 & 牛顿发现万有引力有关?》](https://github.com/digoal/blog/blob/master/202010/20201018_01.md)
- 《HTAP数据库 PostgreSQL 场景与性能测试之 47 - (OLTP多模优化) 空间应用 - 高并发空间位置更新、多属性KNN搜索并测(含空间索引)末端配送、新零售类项目》