【ICLR 2017】端到端优化的图像压缩

简介:

【ICLR 2017】端到端优化的图像压缩

相关文章
|
9月前
|
机器学习/深度学习 编解码 自然语言处理
ICCV 2023 | SwiftFormer:基于Transformer的实时移动视觉应用中的高效加性注意
ICCV 2023 | SwiftFormer:基于Transformer的实时移动视觉应用中的高效加性注意
132 2
|
9月前
|
机器学习/深度学习 人工智能 计算机视觉
CVPR 2023 | AdaAD: 通过自适应对抗蒸馏提高轻量级模型的鲁棒性
CVPR 2023 | AdaAD: 通过自适应对抗蒸馏提高轻量级模型的鲁棒性
284 0
|
9月前
|
机器学习/深度学习 编解码 数据可视化
RecursiveDet | 超越Sparse RCNN,完全端到端目标检测的新曙光
RecursiveDet | 超越Sparse RCNN,完全端到端目标检测的新曙光
138 0
|
9月前
|
机器学习/深度学习 自然语言处理 算法
从滑动窗口到YOLO、Transformer:目标检测的技术革新
从滑动窗口到YOLO、Transformer:目标检测的技术革新
209 0
|
机器学习/深度学习 自然语言处理 大数据
INTERSPEECH 2022论文解读|Paraformer: 高识别率、高计算效率的单轮非自回归端到端语音识别模型
INTERSPEECH 是由国际语音通讯协会(International Speech Communication Association, ISCA)创办的语音信号处理领域顶级旗舰国际会议。历届 INTERSPEECH 会议都备受全球各地语音语言领域人士的广泛关注。 本文介绍一种具有高识别率与计算效率的单轮非自回归模型 Paraformer。该论文已被 INTERSPEECH 2022 接收。
915 0
INTERSPEECH 2022论文解读|Paraformer: 高识别率、高计算效率的单轮非自回归端到端语音识别模型
|
机器学习/深度学习 存储 自动驾驶
FastPillars实时3D目标检测 | 完美融合PointPillar、YOLO以及RepVGG的思想(一)
FastPillars实时3D目标检测 | 完美融合PointPillar、YOLO以及RepVGG的思想(一)
1529 0
|
数据可视化 Go 计算机视觉
FastPillars实时3D目标检测 | 完美融合PointPillar、YOLO以及RepVGG的思想(二)
FastPillars实时3D目标检测 | 完美融合PointPillar、YOLO以及RepVGG的思想(二)
240 0
|
机器学习/深度学习 自然语言处理 算法
DETR也需要学习 | DETR-Distill模型蒸馏让DETR系类模型持续发光发热!!!(一)
DETR也需要学习 | DETR-Distill模型蒸馏让DETR系类模型持续发光发热!!!(一)
355 0
|
计算机视觉
DETR也需要学习 | DETR-Distill模型蒸馏让DETR系类模型持续发光发热!!!(二)
DETR也需要学习 | DETR-Distill模型蒸馏让DETR系类模型持续发光发热!!!(二)
300 0
|
机器学习/深度学习 人工智能 算法
卷!MIT泊松流生成模型击败扩散模型,兼顾质量与速度
卷!MIT泊松流生成模型击败扩散模型,兼顾质量与速度
171 0