【CVPR 2018】PIXOR: 点云中三维目标的实时检测

简介:

【CVPR 2018】PIXOR: 点云中三维目标的实时检测

相关文章
|
7月前
|
传感器 算法 数据处理
yolo目标检测+目标跟踪+车辆计数+车辆分割+车道线变更检测+速度估计
yolo目标检测+目标跟踪+车辆计数+车辆分割+车道线变更检测+速度估计
|
机器学习/深度学习 传感器 人工智能
首篇!最全的全景分割综述(RGB图像/医学图像/LiDAR)(下)
本文对现有的全景分割方法进行了第一次全面的综述。因此,基于所采用的算法、应用场景和主要目标的性质,对现有全景技术进行了定义良好的分类。此外,还讨论了全景分割在通过伪标记标注新数据集中的应用。接下来,进行消融研究,以从不同角度了解全景方法。此外,还讨论了适用于全景分割的评估指标,并对现有解决方案的性能进行了比较,以了解最新技术并确定其局限性和优势。最后,阐述了当前主题技术面临的挑战以及近期吸引大量关注的未来趋势,这可以作为未来研究的起点。
首篇!最全的全景分割综述(RGB图像/医学图像/LiDAR)(下)
|
存储 传感器 数据可视化
3D目标检测数据集 KITTI(标签格式解析、3D框可视化、点云转图像、BEV鸟瞰图)
本文介绍在3D目标检测中,理解和使用KITTI 数据集,包括KITTI 的基本情况、下载数据集、标签格式解析、3D框可视化、点云转图像、画BEV鸟瞰图等,并配有实现代码。
1800 1
|
机器学习/深度学习 传感器 编解码
史上最全 | BEV感知算法综述(基于图像/Lidar/多模态数据的3D检测与分割任务)
以视觉为中心的俯视图(BEV)感知最近受到了广泛的关注,因其可以自然地呈现自然场景且对融合更友好。随着深度学习的快速发展,许多新颖的方法尝试解决以视觉为中心的BEV感知,但是目前还缺乏对该领域的综述类文章。本文对以视觉为中心的BEV感知及其扩展的方法进行了全面的综述调研,并提供了深入的分析和结果比较,进一步思考未来可能的研究方向。如下图所示,目前的工作可以根据视角变换分为两大类,即基于几何变换和基于网络变换。前者利用相机的物理原理,以可解释性的方式转换视图。后者则使用神经网络将透视图(PV)投影到BEV上。
史上最全 | BEV感知算法综述(基于图像/Lidar/多模态数据的3D检测与分割任务)
|
7月前
|
传感器 机器学习/深度学习 自动驾驶
【多模态融合】CRN 多视角相机与Radar融合 实现3D检测、目标跟踪、BEV分割 ICCV2023
本文介绍使用雷达与多视角相机融合,实现3D目标检测、3D目标跟踪、道路环境BEV分割,它是来自ICCV2023的。CRN,全称是Camera Radar Net,是一个多视角相机-雷达融合框架。 通过融合多视角相机和雷达的特性,生成语义丰富且空间精确的BEV特征图。实现3D物体检测、跟踪和BEV分割任务。
641 1
|
7月前
|
算法 定位技术 图形学
基于Pix4Dmapper的运动结构恢复无人机影像三维模型重建
基于Pix4Dmapper的运动结构恢复无人机影像三维模型重建
139 2
|
机器学习/深度学习 JavaScript 前端开发
Mediapipe三维实时人体关键点检测与追踪(一)
Mediapipe三维实时人体关键点检测与追踪(一)
1585 0
|
计算机视觉
Mediapipe三维实时人体关键点检测与追踪(二)
Mediapipe三维实时人体关键点检测与追踪(二)
1161 0
|
传感器 存储 编解码
使用激光雷达数据构建地图并使用SLAM算法估计车辆轨迹
使用激光雷达数据构建地图并使用SLAM算法估计车辆轨迹。
234 0
|
传感器 人工智能 数据可视化
点云配准新方案!SuperLine3D:激光雷达点云中的自监督线分割和描述子提取(ECCV2022)
电线杆和建筑物的轮廓是城市道路上随处可见的物体,可为计算机视觉提供可靠的提示。为了重复提取它们作为特征并在离散的LiDAR帧之间实现关联以进行点云匹配。本文提出了一个用于LiDAR点云中3D线的基于学习的特征分割和描述子模型。
点云配准新方案!SuperLine3D:激光雷达点云中的自监督线分割和描述子提取(ECCV2022)