【ICCV 2015】深度强化学习目标定位

简介:

【ICCV 2015】深度强化学习目标定位

相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
KDD 2024:港大黄超团队深度解析大模型在图机器学习领域的未知边界
【8月更文挑战第12天】在KDD 2024会议中,香港大学黄超团队深入探讨了大型语言模型在图机器学习的应用与前景。他们提出将LLMs与图神经网络结合可显著增强图任务性能,并归纳出四种融合模式,为领域发展提供新视角与未来路径。论文详细分析了现有方法的优势与局限,并展望了多模态数据处理等前沿课题。[论文](https://arxiv.org/abs/2405.08011)为图机器学习领域注入了新的活力。
211 61
|
5月前
|
编解码 自然语言处理 计算机视觉
超越CVPR 2024方法,DynRefer在区域级多模态识别任务上,多项SOTA
【6月更文挑战第29天】DynRefer,一款超越CVPR 2024的多模态识别工具,通过模拟人类视觉的动态分辨率,提升区域级任务的准确性和适应性。在区域字幕生成、识别和属性检测上取得SOTA,但计算成本高且可能依赖于对齐精度。[链接: https://arxiv.org/abs/2405.16071]
56 1
|
6月前
|
测试技术 计算机视觉
ICLR 2024 Spotlight:自蒸馏激发CLIP模型的检测分割能力
【2月更文挑战第28天】ICLR 2024 Spotlight:自蒸馏激发CLIP模型的检测分割能力
158 1
ICLR 2024 Spotlight:自蒸馏激发CLIP模型的检测分割能力
|
6月前
|
机器学习/深度学习 自然语言处理 数据可视化
【论文精读】基于知识图谱关系路径的多跳智能问答模型研究
【论文精读】基于知识图谱关系路径的多跳智能问答模型研究
|
11月前
|
机器学习/深度学习 人工智能 算法
AI Earth有没有相关文档或论文介绍平台地物分类、目标提取、变化检测等算法的原理呢?
AI Earth有没有相关文档或论文介绍平台地物分类、目标提取、变化检测等算法的原理呢?
337 1
|
机器学习/深度学习 数据可视化 自动驾驶
NeurIPS 2022 | 准确建模多智能体系统,斯坦福提出隐空间多层图模型
NeurIPS 2022 | 准确建模多智能体系统,斯坦福提出隐空间多层图模型
195 0
NeurIPS 2022 | 准确建模多智能体系统,斯坦福提出隐空间多层图模型
|
机器学习/深度学习 编解码 自动驾驶
联合训练2D-3D多任务学习 | 深度估计、检测、分割、3D检测通吃
联合训练2D-3D多任务学习 | 深度估计、检测、分割、3D检测通吃
341 0
|
自动驾驶 数据挖掘 计算机视觉
CVPR2022 | 利用域自适应思想,北大、字节跳动提出新型弱监督物体定位框架
CVPR2022 | 利用域自适应思想,北大、字节跳动提出新型弱监督物体定位框架
167 0
|
机器学习/深度学习
ECCV 2022|DynamicDepth:动态场景下的多帧自监督深度估计
在DOMD进行crop-粘贴的操作之后,图片中已不存在动态物体,但是新的问题又出现了,那就是遮挡区域,如下图的输入部分,我们可以看到crop后的部分区域是黑色的,因为该部分实际被遮挡了,因此本文在构建cost volume的时候需要考虑到被遮挡的情况。如上图所示,被遮挡部分的特征被临近部分的数据所填充,这样可以促进训练的梯度流向附近的non-occluded区域。
261 0
|
机器学习/深度学习 编解码 人工智能
90+目标跟踪算法&九大benchmark!基于判别滤波器和孪生网络的视觉目标跟踪:综述与展望(上)
视觉目标跟踪(VOT)是计算机视觉中的一个基本开放问题,任务是估计图像序列中目标的轨迹和状态。VOT具有广泛的应用,包括自动驾驶、机器人、智能视频监控、运动分析和医学成像。给定任意目标对象的初始状态,VOT中的主要挑战是学习在后续帧中搜索目标对象时使用的外观模型。近年来,由于引入了多种跟踪基准,如TrackingNet、VOT2018和GOT-10K,VOT受到了极大的关注。尽管最近取得了进展,VOT仍然是一个开放的研究问题,可能比以往任何时候都更加活跃。
90+目标跟踪算法&九大benchmark!基于判别滤波器和孪生网络的视觉目标跟踪:综述与展望(上)