m多载波MC-CDMA系统单用户检测方法的研究,对比EGC,MRC,ORC以及MMSE

简介: m多载波MC-CDMA系统单用户检测方法的研究,对比EGC,MRC,ORC以及MMSE

1.算法概述

   传统CDMA技术在码间串扰和多址干扰等方面存在的问题使其总体性能受到限制,随着OFDM技术的发展,出现了OFDM结合CDMA的信技术,即多载波CDMA技术,其结合了OFDM和CDMA的技术优势。首先分别介绍了OFDM和CDMA理论知识,并分别使用Matlab进行了仿真分析,然后介绍了多载波CDMA技术的理论知识,并给出了多载波CDMA系统的数学模块,并对该系统进行了详细的探讨。然后在本文的第三章,就多载波系统,针对单用户检测技术进行了研究。作为本课题的主要研究内容,本文分别对单用户检测的几个关键技术做了研究,主要有等比合并EGC,最大比合并MRC,正交恢复合并ORC以及最小均方误差合并MMSE。对该四种方法进行了误码率仿真分析,并对其中性能较好的MMSE做了重点实现与研究,从而给出了一个完整的单用户检测系统的设计方法。

   多载波调制在DAB、DV等广播中的成功应用,使得研究人员开始研究其在移动通信中是否也能获得成功。相关研究从1993年开始,其多址技术一般采用DS-DMA。OFDM多载波调制技术和CDMA码分多址技术的结合具体有三种方式:多载波CDMA,多载波直接序列扩频CDMA和多音CDMA)。本课题将重点研究多载波CDMA系统。

   多载波系统在结构上首先是将直接序列进行扩频,然后将多载波调制串行级联。其具体过程为:第一,将符号经长度为m的扩频码扩频得到m个扩频码片,这m个扩频码片再由m个子载波并行传输。若取m小于,则可引入频率交织等技术,若子载波数目等于扩频码的长度m,则多载波系统所需要的带宽和普通系统所需带宽相同。对于多载波系统,单用户的数据如下所示:

1.png

   本课题将重点检测多载波系统下的单用户检测技术。单用户检测其具体含义指的是在检测用户的时候,不考虑其他用户的信息,将他们作为噪声处理。通过均衡对信号幅值和信道畸变恢复出用户信号间的正交性,从而减小衰落和多址干扰影响。通常可以用每个子载波上的单抽头均衡来补偿此子载波上的平衰落影响,然后再进行解扩处理。主要的单用户检测方法有:正交恢复合并(ORC)、等增益合并(EGC)、最大比合并(MRC)和最小均方误差合并(MMSE)。

1.正交恢复合并(ORC)

正交恢复合并的原则是在接收机端纠正信道的相位和幅度衰落,恢复不同扩频序列的正交性。

2.png

2.等增益合并(EGC)

3.png

3.最大比合并(MRC)

4.png

4.最小均方误差合并(MMSE)

   最小均方差合并可以有效的控制噪声和用户之间的干扰。它所使用的准则是使合并模块期望输出值和实际输出值之间的均方误差最小化。

2.仿真效果预览
matlab2022a仿真

5.png
6.png
7.png
8.png
9.png
10.png
11.png

3.MATLAB部分代码预览

clc;
clear;
close all;
N=8
T=1e-3;
Ts=T+1/4*T;
f=(-N:N)/T;
color = ['r','g','b','k','y','m','c','r'];
for k=1:7
y(k,:)     = sinc((f - (k-N/2)/T)*Ts);
plot(f/1000,y(k,:),color(k));
hold on;
end
title('7个载波的OFDM信号的频谱');
Main02.m
clc;
close all;
clear;
N = 10;
for i =2:N
y1(i) = i*i;
y2(i) = (i/2)*log2(i);
end
figure;
plot(y1,'r-*');hold on;
plot(y2,'b-*');hold off;
title('IFFT和IDFT的计算量对比');
grid on;
legend('IDFT运行次数','IFFT运行次数');
Main03.m
clc;
clear;
close all;
tic;
num_data=64000;%仿真数据长度
num_user=1;    %用户个数
snr=[0 1 2 3 4 5 6 7];%SNR
for t=1:length(snr)
    ber(t) = mc_cdma(snr(t),num_user,num_data);
end
% EbNo = 0:5:20;
figure;
semilogy(snr,ber,'b-*');
xlabel('Eb/N0');
ylabel('BER');
title('Performance of MC-CDMA ')
grid on
toc;
mc_cdma.m
function ber = mc_cdma(snr,num_user,num_data)
N = 512;           % number of symbols in a single OFDM symbol
GI = 80;           % guard interval
Mt = 1;             % number of Tx antennas
Mr = 1;             % number of Rx antennas
M = 8;              % max constellation bit number
num_subc = 8;        % number of subcarriers
mod_level = 2;
spreadLength=8;
% snr=0;
en = 10^(snr/10);
sigma = 1/sqrt(2*en);
cSpread=[1 1 1 1 1 1 1 1;1 -1 1 -1 1 -1 1 -1;...
        1 1 -1 -1 1 1 -1 -1;1 -1 -1 1 1 -1 -1 1;...
        1 1 1 1 -1 -1 -1 -1;1 -1 1 -1 -1 1 -1 1;...
        1 1 -1 -1 -1 -1 1 1;1 -1 -1 1 -1 1 1 -1];
multipath = [sqrt(0.1897)  0  sqrt(0.3785) 0 0 sqrt(0.2388) 0 0 0  0 sqrt(0.0951) 0 0 0 0 sqrt(0.06) 0 0 0 0 0 0 sqrt(0.0379)]; %% power
multipath_channel0 = zeros(1,length(multipath));
signal_tx = zeros(num_data*spreadLength/N,N + GI);
for loop_user=1:num_user
    msg    = randint(num_data,1);
    code1  = [];
    trel   = poly2trellis(6,[53 75]);
    code1  = [code1 convenc(msg,trel)];
    code   = code1';
    if loop_user == 1
        msg_user1 = msg;
        code_user1 = code1;
    end
    num_data1   = 2*num_data;
    [iout,qout] = qpsk(code,1,num_data1,mod_level);
    inputData   = iout+i*qout;    %???
    [S]         = mc_spreading(inputData,1,num_data,cSpread(loop_user,:),spreadLength);
    for m=1:num_data*spreadLength/N
        ofdm_symbol((m-1)*(N+GI)+1:m*(N+GI)) = ifft_cp_tx_blk(S((m-1)*N+1:m*N),N,GI)*sqrt(N);
    end
    for p = 1:(num_data*spreadLength/N)  
        multipath_channel(p,:) = multipath.*(randn(1,length(multipath_channel0))+j*randn(1,length(multipath_channel0)))*sqrt(0.5);
        if loop_user==1
            multipath_channel_user1(p,:) = multipath_channel(p,:);
        end
        signal_tx_p         = filter(multipath_channel(p,:),[1],ofdm_symbol((N+GI)*(p-1)+1:(N+GI)*p));% passing through the multipath channel
        signal_tx_loop(p,:) = signal_tx_p;
    end
    signal_tx           = signal_tx + signal_tx_loop;
end
noise     = sigma*(randn(num_data*spreadLength/N,N+GI) + j*randn(num_data*spreadLength/N,N+GI));
signal_rx = signal_tx + noise; 
y2 = [];
for q =1:(num_data*spreadLength/N)
    rec_symbol   = [];
    rec_symbol   = [rec_symbol; fft_cp_rx_blk(signal_rx(q,:),N,GI)/sqrt(N)];
    rec_symbol2  = reshape(rec_symbol,Mt*N,1);
    h   = [multipath_channel_user1(q,:),zeros(1,N+GI-length(multipath))];
    Hf1 = fft(h,N);
    for n = 1:N/spreadLength
        y1=0;
        for m = 1:spreadLength
            y1 = y1 + cSpread(1,m)*conj(Hf1((n-1)*spreadLength+m))*rec_symbol2((n-1)*spreadLength+m);
        end
        temp(n) = y1;
    end
    y2 = [y2,temp];
end
y          =  reshape(y2,1,num_data);
idata      =  real(y);
qdata      =  imag(y);
y_demod    =  deqpsk(idata,qdata,1,num_data,mod_level);
y_demod    =  y_demod';
tblen      =  10;
decoded1   =  vitdec(y_demod,trel,tblen,'cont','hard');
[n1,r1]    =  biterr(decoded1(tblen+1:end),msg_user1(1:end-tblen,1));
ber        =  r1;
01-034m
相关文章
|
26天前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
|
人工智能 分布式计算 大数据
超级计算与大数据:推动科学研究的发展
【9月更文挑战第30天】在信息时代,超级计算和大数据技术正成为推动科学研究的关键力量。超级计算凭借强大的计算能力,在尖端科研、国防军工等领域发挥重要作用;大数据技术则提供高效的数据处理工具,促进跨学科合作与创新。两者融合不仅提升了数据处理效率,还推动了人工智能、生物科学等领域的快速发展。未来,随着技术进步和跨学科合作的加深,超级计算与大数据将在科学研究中扮演更加重要的角色。
|
存储 数据可视化 数据挖掘
大数据环境下的房地产数据分析与预测研究的设计与实现
本文介绍了一个基于Python大数据环境下的昆明房地产市场分析与预测系统,通过数据采集、清洗、分析、机器学习建模和数据可视化技术,为房地产行业提供决策支持和市场洞察,探讨了模型的可行性、功能需求、数据库设计及实现过程,并展望了未来研究方向。
646 4
大数据环境下的房地产数据分析与预测研究的设计与实现
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的题目——北京移动用户体验影响因素研究,提供了问题一的建模方案、代码实现以及相关性分析,并对问题二的建模方案进行了阐述。
299 0
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
|
机器学习/深度学习 自然语言处理 数据可视化
基于Python大数据的京东产品评论的情感分析的研究,包括snwonlp情感分析和LDA主题分析
本文探讨了基于Python大数据技术对京东产品评论进行情感分析的研究,涵盖了文本预处理、情感分类、主题建模等步骤,并运用了snwonlp情感分析和LDA主题分析方法,旨在帮助电商企业和消费者做出更明智的决策。
517 1
基于Python大数据的京东产品评论的情感分析的研究,包括snwonlp情感分析和LDA主题分析
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题二建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的问题二的建模方案和Python代码实现,包括数据预处理、特征工程、模型训练以及预测结果的输出,旨在通过数据分析与建模方法帮助中国移动北京公司提升客户满意度。
238 2
|
数据采集 搜索推荐 大数据
基于大数据的市场分析与消费者行为研究
【6月更文挑战第5天】大数据在市场分析与消费者行为研究中扮演关键角色。通过海量数据分析,企业能更全面、精准地了解消费者偏好和市场趋势。Python等工具帮助处理数据,揭示购买习惯,支持个性化营销策略。同时,大数据使深入理解消费者心理、决策过程成为可能,助力企业优化产品,提升客户满意度和忠诚度。在这个数据驱动的时代,大数据是洞悉市场和消费者的魔法力量。
586 2
|
SQL 分布式计算 Hadoop
[AIGC ~大数据] 深入理解Hadoop、HDFS、Hive和Spark:Java大师的大数据研究之旅
[AIGC ~大数据] 深入理解Hadoop、HDFS、Hive和Spark:Java大师的大数据研究之旅
361 0
|
人工智能 安全 大数据
喜报|瓴羊Dataphin入选上海市经信委2023创新攻关成果、IDC企业大数据治理研究代表产品
喜报|瓴羊Dataphin入选上海市经信委2023创新攻关成果、IDC企业大数据治理研究代表产品
294 0
|
存储 人工智能 Cloud Native
云原生大数据架构实践与思考-DataFunTalk
导读: 作者:振策-阿里云计算平台-产品解决方案, 20230805 本文将分享当前云原生大数据架构的发展历程/架构定义/核心能力/应用场景及趋势思考。主要包括以下四个部分: - 从大数据上云看架构 - 云原生数据平台的核心能力 - Data+AI with Cloud-Native - 未来趋势与思考
2857 0

热门文章

最新文章