机器学习在金融领域的应用场景(含具体案例)

简介: 机器学习在金融领域的应用场景(含具体案例)

1 机器学习与AI的关系


初学者很容易理不清这两者的关系。

image.png


2 机器学习在金融行业的应用


金融预测分析(欺诈检测、信用风险)、替代人工操作(基金经理跑不赢指数)

image.png


下面附一些应用案例。


2.1 交易信号

通过机器学习处理买卖盘数据来判断市场的方向。

image.png


2.1 交易行为分析

通过多种参数对大量交易者交易行为评级(交易胜率,风控能力,盈利稳定性…)

image.png


2.3 市场情绪

消息对大盘的影响,举例推特13年关于奥巴马的一个假消息的发布对股市造成的影响。

image.png


举例2014-2015年上证指数,通过ma30,ma90情绪来对市场判断,预测指数走势。我们可以看到在15年6月左右,30日均线下穿90日均线,看空情绪高涨。【可行性待验证】

image.png


搜索量变化指标与指数走势的关系,因此我们可以通过观察搜索引擎中特定关键词的搜索量的变化对交易策略进行调整。

image.png


两种操作对比(购买某一指数锁定持仓与谷歌指数交易策略进行对比)

image.png


3 Benefits


  • Reduced operational costs through process automation
  • Increased revenues due to better productivity and enhanced

user experiences

  • Better compliance and reinforced security


推荐阅读:

1.Social_Media_and_News_Sentiment_Analysis_for_Advanced_Investment_Strategies

目录
相关文章
|
4月前
|
人工智能 自然语言处理 数据挖掘
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
2月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
4月前
|
机器学习/深度学习 数据采集 人工智能
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
随着Web技术发展,动态加载数据的网站(如今日头条)对传统爬虫提出新挑战:初始HTML无完整数据、请求路径动态生成且易触发反爬策略。本文以爬取“AI”相关新闻为例,探讨了通过浏览器自动化、抓包分析和静态逆向接口等方法采集数据的局限性,并提出借助机器学习智能识别AJAX触发点的解决方案。通过特征提取与模型训练,爬虫可自动推测数据接口路径并高效采集。代码实现展示了如何模拟AJAX请求获取新闻标题、简介、作者和时间,并分类存储。未来,智能化将成为采集技术的发展趋势。
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
|
4月前
|
人工智能 自然语言处理 数据库
云上玩转Qwen3系列之二:PAI-LangStudio搭建联网搜索和RAG增强问答应用
本文详细介绍了如何使用 PAI-LangStudio 和 Qwen3 构建基于 RAG 和联网搜索 的 AI 智能问答应用。该应用通过将 RAG、web search 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了额外的联网搜索和特定领域知识库检索的能力,提升了智能回答的效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
|
6月前
|
运维 Kubernetes 监控
CI/CD(六)模型训练发布-追数场景
训练的场景比较特殊,在没有自动化之前是人工部署、依赖运维调整机器配置、凭记忆不定时去查看日志和监控确认训练进度,训练完成后再联系运维释放机器,现通过全自助选择训练规格、自动化部署、每日自动提醒、一键结束训练并回收资源
145 19
|
7月前
|
机器学习/深度学习 数据采集 人工智能
MATLAB在机器学习模型训练与性能优化中的应用探讨
本文介绍了如何使用MATLAB进行机器学习模型的训练与优化。MATLAB作为强大的科学计算工具,提供了丰富的函数库和工具箱,简化了数据预处理、模型选择、训练及评估的过程。文章详细讲解了从数据准备到模型优化的各个步骤,并通过代码实例展示了SVM等模型的应用。此外,还探讨了超参数调优、特征选择、模型集成等优化方法,以及深度学习与传统机器学习的结合。最后,介绍了模型部署和并行计算技巧,帮助用户高效构建和优化机器学习模型。
MATLAB在机器学习模型训练与性能优化中的应用探讨
|
7月前
|
机器学习/深度学习 算法 数据挖掘
探索机器学习在农业中的应用:从作物预测到精准农业
探索机器学习在农业中的应用:从作物预测到精准农业
|
4月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
10月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1004 6