python--测试使用不同的方式计算位涡平流项的差异

简介: python--测试使用不同的方式计算位涡平流项的差异

python计算位涡平流项



主要为了测试计算位涡平流项的准确性,这里使用了两种方法来计算位涡的平流项。


  • 方法1:使用metpy函数
  • 方法2:编写代码自己计算


一般使用metpy函数的计算结果,已经是等号右边的那一项了。也就是说相当于下图所示:


51b7b60f3eb14ae2906c999c9237434b.png

展开来就是:


image.png


使用metpy的函数时,需要注意的点:变量带上单位。


具体的代码如下所示:


import numpy as np
import pandas as pd
import xarray as xr
import proplot as pplt
import glob
from matplotlib.colors import ListedColormap 
from wrf import getvar,pvo,interplevel,destagger,latlon_coords
from cartopy.mpl.ticker import LongitudeFormatter,LatitudeFormatter
from netCDF4 import Dataset
import matplotlib as mpl   
from metpy.units import units
import metpy.constants as constants
import metpy.calc as mpcalc
import cmaps
f_w   = r'D:/wind.nc'
f_pv  = r'D:/pv.nc'
def  cal_dxdy(file):
    ncfile = Dataset(file)
    P = getvar(ncfile, "pressure")
    lats, lons = latlon_coords(P)
    lon = lons[0]
    lon[lon<=0]=lon[lon<=0]+360
    lat = lats[:,0]
    dx, dy = mpcalc.lat_lon_grid_deltas(lon.data, lat.data)
    return lon,lat,dx,dy
path  = r'J:/wrfout/'
filelist = glob.glob(path+'wrf*')
filelist.sort()
lon,lat,dx,dy = cal_dxdy(filelist[-1]) 
dw = xr.open_dataset(f_w)
dp = xr.open_dataset(f_pv)
u = dw.u
v = dw.v
pv = dp.pv
u = u.data*units('m/s')
v = v.data*units('m/s')
units.define('PVU = 1e-6 m^2 s^-1 K kg^-1 = pvu')
pv = pv.data*units('pvu').to('m^2 s^-1 K kg^-1')
lon = dw.lon
lat = dw.lat
time= dw.time
leve= dw.level
xlon,ylat=np.meshgrid(lon,lat)
dlony,dlonx=np.gradient(xlon)
dlaty,dlatx=np.gradient(ylat)
pi=3.14159265
re=6.37e6
dx=re*np.cos(ylat*pi/180)*dlonx*pi/180
dy=re*dlaty*pi/180
adv = np.full((time.shape[0],leve.shape[0],lat.shape[0],lon.shape[0]),np.nan)*units('m/s')*units("m^2 s^-1 K kg^-1")/units("m")
for i in range(time.shape[0]):
    for j in range(leve.shape[0]):
        print(i,j) 
        adv[i,j,:,:] = mpcalc.advection(pv[i,j,:,:],u=u[i,j,:,:],v=v[i,j,:,:],dx=dx,dy=dy,x_dim=-1,y_dim=-2)
########################## way 2 ########################################## 
u0 = dw.u.data
v0 = dw.v.data
dpdx = np.gradient(pv,axis=-1)
dpdy = np.gradient(pv,axis=-2)
pvadv = np.full((time.shape[0],leve.shape[0],lat.shape[0],lon.shape[0]),np.nan)
for i in range(time.shape[0]):
    for j in range(leve.shape[0]):
        print(i,j) 
        pvadv[i,j] = -(u0[i,j]*dpdx[i,j]/dx+v0[i,j]*dpdy[i,j]/dy)
f, axs = pplt.subplots( ncols=1, nrows=2,
                       figsize=(8,6),
                      tight=True,
                       proj='cyl',
                       proj_kw={'lon_0': 180}, lonlim=(100, 210), 
                             latlim=(-25, 25),
                       share=4,
                       )
axs[0].contourf(lon[::4],lat[::4],adv[16,6][::4,::4],colorbar='b')
axs[1].contourf(lon[::4],lat[::4],pvadv[16,6][::4,::4],colorbar='b')
axs.format(title=time[16],titleloc='l',
          coast=True, 
            labels=True,
           fontsize=10,
          )


结果对比,更方面的是直接绘制折线图。选取两个同样的点即可

相关文章
|
5月前
|
机器学习/深度学习 人工智能 并行计算
AI部署架构:A100、H100、A800、H800、H20的差异以及如何选型?开发、测试、生产环境如何进行AI大模型部署架构?
AI部署架构:A100、H100、A800、H800、H20的差异以及如何选型?开发、测试、生产环境如何进行AI大模型部署架构?
AI部署架构:A100、H100、A800、H800、H20的差异以及如何选型?开发、测试、生产环境如何进行AI大模型部署架构?
|
10月前
|
安全 关系型数据库 测试技术
学习Python Web开发的安全测试需要具备哪些知识?
学习Python Web开发的安全测试需要具备哪些知识?
190 61
|
4月前
|
网络协议 API 开发者
分析http.client与requests在Python中的性能差异并优化。
合理地选择 `http.client`和 `requests`库以及在此基础上优化代码,可以帮助你的Python网络编程更加顺利,无论是在性能还是在易用性上。我们通常推荐使用 `requests`库,因为它的易用性。对于需要大量详细控制的任务,或者对性能有严格要求的情况,可以考虑使用 `http.client`库。同时,不断优化并管理员连接、设定合理超时和重试都是提高网络访问效率和稳定性的好方式。
115 19
|
3月前
|
测试技术 Python
Python测试报告生成:整合错误截图,重复用例执行策略,调整测试顺序及多断言机制。
如何组织这一切呢?你可以写一本名为“Python测试之道”的动作指南手册,或者创建一个包含测试策略、测试顺序、多断言机制的脚本库。只要你的测试剧本编写得足够独到,你的框架就会像一位执行任务的超级英雄,将任何潜伏于代码深处的错误无情地揪出来展现在光天化日之下。这些整理好的测试结果,不仅有利于团队协作,更像冒险故事中的精彩篇章,带给读者无尽的探索乐趣和深刻的思考。
92 10
|
3月前
|
测试技术 Python
Python接口自动化测试中Mock服务的实施。
总结一下,Mock服务在接口自动化测试中的应用,可以让我们拥有更高的灵活度。而Python的 `unittest.mock`库为我们提供强大的支持。只要我们正确使用Mock服务,那么在任何情况下,无论是接口是否可用,都可以进行准确有效的测试。这样,就大大提高了自动化测试的稳定性和可靠性。
118 0
|
5月前
|
Python
Python中Cp、Cpk、Pp、Ppk的计算与应用
总的来说,Cp、Cpk、Pp、Ppk是衡量过程能力的重要工具,它们可以帮助我们了解和改进生产过程,提高产品质量。
275 13
|
5月前
|
存储 人工智能 算法
使用Python计算从位置x到y的最少步数
本文通过Python代码结合广度优先搜索(BFS)算法,解决从起点到终点的最少步数问题。以二维网格为例,机器人只能上下左右移动,目标是最短路径。BFS按层遍历,确保首次到达终点即为最短路径。文中提供完整Python实现,包括队列与访问标记数组的使用,并输出示例结果。此外,还探讨了双向BFS、Dijkstra及A*算法等优化方法,帮助读者深入理解最短路径问题及其高效解决方案。
118 0
|
6月前
|
机器学习/深度学习 设计模式 测试技术
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
|
6月前
|
存储 JSON API
Python测试淘宝店铺所有商品接口的详细指南
本文详细介绍如何使用Python测试淘宝店铺商品接口,涵盖环境搭建、API接入、签名生成、请求发送、数据解析与存储、异常处理等步骤。通过具体代码示例,帮助开发者轻松获取和分析淘宝店铺商品数据,适用于电商运营、市场分析等场景。遵守法规、注意调用频率限制及数据安全,确保应用的稳定性和合法性。
|
7月前
|
算法
MATLAB在风险管理中的应用:从VaR计算到压力测试
本文介绍如何使用MATLAB进行风险管理,涵盖风险度量(如VaR)、压力测试和风险分解。通过历史模拟法、参数法和蒙特卡洛模拟法计算VaR,评估投资组合在极端市场条件下的表现,并通过边际VaR和成分VaR识别风险来源。结合具体案例和代码实现,帮助读者掌握MATLAB在风险管理中的应用,确保投资组合的稳健性。

推荐镜像

更多