python--转换wrf输出的风场数据为网页可视化的json格式

简介: python--转换wrf输出的风场数据为网页可视化的json格式

前言:



  • 一般网页可视化风场中的数据都是json格式,而如果我们希望将wrf模式模拟输出的风场数据在网页中进行展示,这就需要先将wrfoutput数据转换为网页可以识别的json格式。


  • 这里主要需要用到json库,主要的实现方式就是将读取的风场风量U,V转换为字典并存到json文件中


  • 同时,由于wrf模拟的数据一般是非等间距的网格,需要先将数据进行插值,插值到等间距的网格,这里可以通过NCL的函数rcm2rgrid_Wrap实现


举个例子,将模式中设置为兰伯特投影的网格:


857bf7449d064bd58d84d985a0aa615c.png

插值为等间距网格:


c6277bf58fc64a2d821e568b70b191fd.png

主要的编程分为两部分:

  • 第一部分通过NCL脚本将wrfout数据转换为等间距网格,并导出为netcdf格式;
  • 第二部分通过python脚本将第一步导出的nc格式进行转换,并保存输出为json格式。


NCL插值脚本1


  • 需要修改的就是路径和变量,我下面展示脚本不仅有风场数据u,v还有降水,海表面压力,气温等,可自行修改


begin
  a = addfile("/Users/WRF/outdata/2022071000/wrfout_d01_2022-07-10_01:00:00","r")
  lat2d = a->XLAT(0,:,:)
  lon2d = a->XLONG(0,:,:)
  lat1d = lat2d(:,0)
  lon1d = lon2d(0,:)
  time = wrf_user_getvar(a,"XTIME",-1)
  u10 = wrf_user_getvar(a,"U10",0)
  v10 = wrf_user_getvar(a,"V10",0)
  slp = wrf_user_getvar(a,"slp",0)
  t2  = wrf_user_getvar(a,"T2",0)
  td  = wrf_user_getvar(a,"td",0)
  rainc = wrf_user_getvar(a,"RAINC",0)
  rainnc = wrf_user_getvar(a,"RAINNC",0)
  u10@lat2d = lat2d
  u10@lon2d = lon2d
  u10_ip = rcm2rgrid_Wrap(lat2d,lon2d,u10,lat1d,lon1d,0)
  v10@lat2d = lat2d
  v10@lon2d = lon2d
  v10_ip = rcm2rgrid_Wrap(lat2d,lon2d,v10,lat1d,lon1d,0)
  slp_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,slp,lat1d,lon1d,0)
  t2_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,t2,lat1d,lon1d,0)
  td_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,td,lat1d,lon1d,0)
  rainc_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,rainc,lat1d,lon1d,0)
  rainnc_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,rainnc,lat1d,lon1d,0)
  outf = addfile("/Users/wrfout_d01_2022-07-10_01:00:00.nc","c")
  outf->time =  time
  outf->lat  =  lat2d
  outf->lon  =  lon2d
  outf->u10  =  u10_ip
  outf->v10  =  v10_ip
  outf->slp  =  slp_ip
  outf->t2   =  t2_ip
  outf->td   =  td_ip
  outf->rainc   =  rainc_ip
  outf->rainnc  =  rainnc_ip
end


上述脚本的缺点在于只能基于模式模拟的经纬度区域进行插值,意思就是说他的经纬度区域是固定的那么大


NCL插值脚本2


NCL还有一个函数可以实现上述过程,就是ESMF_regrid,该函数的优点在于可以实现任意经纬度范围的插值,但是不足在于对于存在高度层的变量,暂时无法进行高度层的数据读取。(也可能我水平有限不知道。。。。)这里也附上脚本:


load "$NCARG_ROOT/lib/ncarg/nclscripts/esmf/ESMF_regridding.ncl"
begin
  a = addfile("/Users/WRF/outdata/2022071000/wrfout_d01_2022-07-10_01:00:00","r")
  u10 = wrf_user_getvar(a,"U10",0)
  v10 = wrf_user_getvar(a,"V10",0)
  slp = wrf_user_getvar(a,"slp",0)
  t2  = wrf_user_getvar(a,"T2",0)
;  td  = wrf_user_getvar(a,"td",0)
  rainc = wrf_user_getvar(a,"RAINC",0)
  rainnc = wrf_user_getvar(a,"RAINNC",0)
  u10@lat2d = a->XLAT(0,:,:) 
  u10@lon2d = a->XLONG(0,:,:)
  v10@lat2d = a->XLAT(0,:,:) 
  v10@lon2d = a->XLONG(0,:,:)
  slp@lat2d = a->XLAT(0,:,:) 
  slp@lon2d = a->XLONG(0,:,:)
  t2@lat2d = a->XLAT(0,:,:) 
  t2@lon2d = a->XLONG(0,:,:)
;  td@lat2d = a->XLAT(0,:,:) 
;  td@lon2d = a->XLONG(0,:,:)
  rainc@lat2d = a->XLAT(0,:,:) 
  rainc@lon2d = a->XLONG(0,:,:)
  rainnc@lat2d = a->XLAT(0,:,:) 
  rainnc@lon2d = a->XLONG(0,:,:)
  lat2d = a->XLAT(0,:,:)
  lon2d = a->XLONG(0,:,:)
  lat1d = lat2d(:,0)
  lon1d = lon2d(0,:)
  latS = -20
  latN = 50
  lonW = 95
  lonE = 145
  Opt = True
  Opt@InterpMethod = "bilinear" 
  Opt@ForceOverwrite = True 
  Opt@SrcMask2D = where(.not. ismissing(v10),1,0) 
  Opt@DstGridType = "0.1deg"
  Opt@DstLLCorner = (/latS, lonW /) 
  Opt@DstURCorner = (/latN, lonE /) 
  u10_regrid = ESMF_regrid(u10,Opt)
  v10_regrid = ESMF_regrid(v10,Opt)
  slp_regrid = ESMF_regrid(slp,Opt)
  t2_regrid = ESMF_regrid(t2,Opt)
;  td_regrid = ESMF_regrid(td,Opt)
  rainc_regrid = ESMF_regrid(rainc,Opt)
  rainnc_regrid = ESMF_regrid(rainnc,Opt)
  time = wrf_user_getvar(a,"XTIME",-1)
  nlon = dimsizes(v10_regrid&lon)
  nlat = dimsizes(v10_regrid&lat)
  ofile = "wrfout_d01_2022-07-10_01:00:00.nc"
  system("rm -rf "+ofile) 
  fout = addfile(ofile,"c") 
  dimNames = (/"lat", "lon"/)
  dimSizes = (/nlat, nlon/)
  dimUnlim = (/False, False/)
  filedimdef(fout,dimNames,dimSizes,dimUnlim) ;-- define dimensions
  filevardef(fout,"lat",typeof(v10_regrid&lat),getvardims(v10_regrid&lat))
  filevardef(fout,"lon",typeof(v10_regrid&lon),getvardims(v10_regrid&lon))
  filevardef(fout,"u10",typeof(u10_regrid),getvardims(u10_regrid))
  filevardef(fout,"v10",typeof(v10_regrid),getvardims(v10_regrid))
  filevardef(fout,"slp",typeof(slp_regrid),getvardims(slp_regrid))
  filevardef(fout,"t2",typeof(t2_regrid),getvardims(t2_regrid))
;  filevardef(fout,"td",typeof(td_regrid),getvardims(td_regrid))
  filevardef(fout,"rainc",typeof(rainc_regrid),getvardims(rainc_regrid))
  filevardef(fout,"rainnc",typeof(rainnc_regrid),getvardims(rainnc_regrid))
  filevarattdef(fout,"lat",v10_regrid&lat) ;-- copy lat attributes
  filevarattdef(fout,"lon",v10_regrid&lon) ;-- copy lon attributes
  filevarattdef(fout,"u10",u10_regrid)
  filevarattdef(fout,"v10",v10_regrid)
  filevarattdef(fout,"slp",slp_regrid)
  filevarattdef(fout,"t2",t2_regrid)
;  filevarattdef(fout,"td",td_regrid)
  filevarattdef(fout,"rainc",rainc_regrid)
  filevarattdef(fout,"rainnc",rainnc_regrid)
  setfileoption(fout,"DefineMode",False)
  fout->u10 = (/u10_regrid/)
  fout->v10 = (/v10_regrid/) 
  fout->slp = (/slp_regrid/) 
  fout->t2 = (/t2_regrid/) 
;  fout->td = (/td_regrid/) 
  fout->rainc  = (/rainc_regrid/) 
  fout->rainnc = (/rainnc_regrid/) 
  fout->lat = (/v10_regrid&lat/) ;-- write lat to new netCDF file
  fout->lon = (/v10_regrid&lon/) ;-- write lon to new netCDF file
  fout->time =  time
end


PS:运行该脚本会生成四个nc文件,分别为:destination_grid_file.nc、source_grid_file.nc、weights_file.nc、wrfout_d01_2022-07-10_01:00:00.nc。其中,wrfout_d01_2022-07-10_01:00:00.nc是我需要的文件,但是其他三个文件如何在运行脚本的过程去掉暂未解决。


python格式转换脚本1


python脚本如下所示:


# -*- coding: utf-8 -*-
"""
Created on %(date)s
@author: %(jixianpu)s
Email : 211311040008@hhu.edu.cn
introduction : keep learning althongh walk slowly
"""
"""
用来读取用ncl插值后的wrfoutput.nc 数据,并生成对应文件名的json格式
"""
import pandas as pd
import os
import json
import netCDF4 as nc
import numpy as np
import  datetime
from netCDF4 import Dataset
import argparse
from argparse import RawDescriptionHelpFormatter
import xarray as xr
import sys
import glob
date = sys.argv[1]
date = str(date)
frst = sys.argv[2]
step = sys.argv[3]
path = r'/Users/WRF/outdata/2022071000/'#只能是已经存在的文件目录且有数据才可以进行读取
start = datetime.datetime.strptime(date,'%Y%m%d%H').strftime("%Y-%m-%d_%H:%M:%S")
end = (datetime.datetime.strptime(date,'%Y%m%d%H')+datetime.timedelta(hours=int(frst))).strftime("%Y-%m-%d_%H:%M:%S")
intp = (datetime.datetime.strptime(date,'%Y%m%d%H')+datetime.timedelta(hours=int(step))).strftime("%Y-%m-%d_%H:%M:%S")
fstart = path+'/wrfout_d01_'+start+'*'
fintp  = path+'/wrfout_d01_'+intp+'*'
fend   = path+'/wrfout_d01_'+end+'*'
file = path+'/*'
filestart = glob.glob(fstart)
fileintp  = glob.glob(fintp)
fileend   = glob.glob(fend)
filelist  = glob.glob(file)
filelist.sort()   
rstart = np.array(np.where(np.array(filelist)==filestart))[0][0]
rintp = np.array(np.where(np.array(filelist)==fileintp))[0][0]
rend   = np.array(np.where(np.array(filelist)==fileend))[0][0]
fn = filelist[rstart:rend:rintp]
outroot = 'Users/'    
for i in fn:
    uhdr = {"header":{"discipline":0,"disciplineName":"Meteorological products","gribEdition":2,"gribLength":131858,"center":0,"centerName":"WRF OUTPUT","subcenter":0,"refTime":"2014-01-31T00:00:00.000Z","significanceOfRT":1,"significanceOfRTName":"Start of forecast","productStatus":0,"productStatusName":"Operational products","productType":1,"productTypeName":"Forecast products","productDefinitionTemplate":0,"productDefinitionTemplateName":"Analysis/forecast at horizontal level/layer at a point in time","parameterCategory":2,"parameterCategoryName":"Momentum","parameterNumber":2,"parameterNumberName":"U-component_of_wind","parameterUnit":"m.s-1","genProcessType":2,"genProcessTypeName":"Forecast","forecastTime":3,"surface1Type":103,"surface1TypeName":"Specified height level above ground","surface1Value":10,"surface2Type":255,"surface2TypeName":"Missing","surface2Value":0,"gridDefinitionTemplate":0,"gridDefinitionTemplateName":"Latitude_Longitude","numberPoints":65160,"shape":6,"shapeName":"Earth spherical with radius of 6,371,229.0 m","gridUnits":"degrees","resolution":48,"winds":"true","scanMode":0,"nx":360,"ny":181,"basicAngle":0,"subDivisions":0,"lo1":0,"la1":90,"lo2":359,"la2":-90,"dx":1,"dy":1}}
    vhdr = {"header":{"discipline":0,"disciplineName":"Meteorological products","gribEdition":2,"gribLength":131858,"center":0,"centerName":"WRF OUTPUT","subcenter":0,"refTime":"2014-01-31T00:00:00.000Z","significanceOfRT":1,"significanceOfRTName":"Start of forecast","productStatus":0,"productStatusName":"Operational products","productType":1,"productTypeName":"Forecast products","productDefinitionTemplate":0,"productDefinitionTemplateName":"Analysis/forecast at horizontal level/layer at a point in time","parameterCategory":2,"parameterCategoryName":"Momentum","parameterNumber":3,"parameterNumberName":"V-component_of_wind","parameterUnit":"m.s-1","genProcessType":2,"genProcessTypeName":"Forecast","forecastTime":3,"surface1Type":103,"surface1TypeName":"Specified height level above ground","surface1Value":10,"surface2Type":255,"surface2TypeName":"Missing","surface2Value":0,"gridDefinitionTemplate":0,"gridDefinitionTemplateName":"Latitude_Longitude","numberPoints":65160,"shape":6,"shapeName":"Earth spherical with radius of 6,371,229.0 m","gridUnits":"degrees","resolution":48,"winds":"true","scanMode":0,"nx":360,"ny":181,"basicAngle":0,"subDivisions":0,"lo1":0,"la1":90,"lo2":359,"la2":-90,"dx":1,"dy":1}}
    data = [uhdr, vhdr]
    newf = Dataset(i)
    lat = np.array(newf.variables['lat'])
    # print(fn,lat)
    lon = np.array(newf.variables['lon'])
    dys = np.diff(lat, axis = 0).mean(1)
    dy = float(dys.mean())
    dxs = np.diff(lon, axis = 1).mean(0)
    dx = float(dxs.mean())
    nx = float(lon.shape[1])
    ny = float(lat.shape[0])
    la1 = float(lat[-1, -1])
    la2 = float(lat[0, 0])
    lo1 = float(lon[0, 0])
    lo2 = float(lon[-1, -1])
    time =(newf.variables['time'])
    dates = nc.num2date(time[:],units=time.units)
    dt = pd.to_datetime(np.array(dates, dtype='datetime64[s]')).strftime("%Y%m%d%H%M%S")
    tms =pd.to_datetime(np.array(dates, dtype='datetime64[s]')).strftime("%Y-%m-%d_%H:%M:%S")
    for ti, time in enumerate(dt):
        datestr = (dt[0][:8])
        timestr = (dt[0][8:10])+'00'
        dirpath = outroot + date
        os.makedirs(dirpath, exist_ok = True)
        outpath = os.path.join(dirpath, '%s.json' % (i[-19:]))
        for u0_or_v1 in [0, 1]:
            h = data[u0_or_v1]['header']
            h['la1'] = la1
            h['la2'] = la2
            h['lo1'] = lo1
            h['lo2'] = lo2
            h['nx'] = nx
            h['ny'] = ny
            h['dx'] = dx
            h['dy'] = dy
            h['forecastTime'] = 0
            h['refTime'] = tms[0] + '.000Z'
            h['gribLength'] = 1538 + nx * ny * 2
            if u0_or_v1 == 0:
                data[u0_or_v1]['data'] = np.array(newf.variables['u10']).ravel().tolist()
            elif u0_or_v1 == 1:
                data[u0_or_v1]['data'] = np.array(newf.variables['v10']).ravel().tolist()
        if ti == 0:
            outf = open(outpath, 'w')
            json.dump(data, outf)
            outf.close()
        outf = open(outpath, 'w')
        json.dump(data, outf)
        outf.close()


上述脚本为Linux系统下运行,运行方式如下:

python  xx.py 起报时间 时常 间隔


举个例子:

我的wrfout数据名称如下:


6879b5d6dc6c4db89ec94f6055a98299.png


python  convert_to_json.py 2022071000 12 06


根据你需要的模式起始时间,起报的时长(小时)以及预报的时间间隔(小时)进行自动化转换。


python 格式转换脚本2


当然,这里也准备了一个windows下的简易脚本,转换出的信息也比较简单,


# -*- coding: utf-8 -*-
"""
Created on %(date)s
@author: %(jixianpu)s
Email : 211311040008@hhu.edu.cn
introduction : keep learning althongh walk slowly
"""
from __future__ import print_function, unicode_literals
import pandas as pd
import os
import json
import netCDF4 as nc
import numpy as np
import  datetime
from netCDF4 import Dataset
import argparse
from argparse import RawDescriptionHelpFormatter
import xarray as xr
# parser = argparse.ArgumentParser(description = """
# """, formatter_class = RawDescriptionHelpFormatter)
args = r'J:/wrf自动化/wrfout_d01_2022-07-10_01_00_00.nc'
outroot = r'D:/'
uhdr = {"header":{
                  "nx":360,
                  "ny":181,
                  "max":11,
                  }}
data = [uhdr]
newf = Dataset(args)
lat = np.array(newf.variables['lat'])
lon = np.array(newf.variables['lon'])
u10 = np.array(newf.variables['u10'])
v10 = np.array(newf.variables['v10'])
# indx = u10>1000
# u10[indx] = np.nan
# v10[indx] = np.nan
w10 = np.nanmax(np.sqrt(u10*u10+v10*v10))
dys = np.diff(lat, axis = 0).mean(1)
dy =    float(dys.mean())
print('Latitude Error:', np.abs((dy / dys) - 1).max())
print('Latitude Sum Error:', (dy / dys - 1).sum())
dxs = np.diff(lon, axis = 1).mean(0)
dx =    float(dxs.mean())
print('Longitude Error:', np.abs(dx / dxs - 1).max())
print('Longitude Sum Error:', (dx / dxs - 1).sum())
nx =    float(lon.shape[1])
ny =    float(lat.shape[0])
la1 =    float(lat[-1, -1])
la2 =   float(lat[0, 0])
lo1 =   float(lon[0, 0])
lo2 =   float(lon[-1, -1])
time =(newf.variables['time'])
dates = nc.num2date(time[:],units=time.units)
dt = pd.to_datetime(np.array(dates, dtype='datetime64[s]')).strftime("%Y%m%d%H%M%S")
ds= {
                      "nx":360,
                      "ny":181,
                      "max":11,
                      # "lo1":0,
                      # "la1":90,
                      # "lo2":359,
                      # "la2":-90,
                      # "dx":1,
                      # "dy":1,
                      # "parameterUnit":"m.s-1",
                      'data':{}
        }
ds['max']   =    float(w10)
ds['nx']    =    (nx)
ds['ny']    =    (ny)
for ti, time in enumerate(dt):
    #2012/02/07/0100Z/wind/surface/level/orthographic=-74.01,4.38,29184
    datestr = (dt[0][:8])
    timestr = (dt[0][8:10])+'00'
    print('Add "#' + datestr + '/' + timestr + 'Z/wind/surface/level/orthographic" to url to see this time')
    dirpath = os.path.join('D:', *datestr.split('/'))
    os.makedirs(dirpath, exist_ok = True)
    outpath = os.path.join(dirpath, '%s-wind-surface-level-gfs-1.0.json' % (timestr,))
    udata=u10.ravel()
    data[0]['data']=[]
    for i in range(len(udata)):
        data[0]['data'].append([
        u10.ravel().tolist()[i],
        v10.ravel().tolist()[i]])
    ds['data'] = data[0]['data']
outf = open(outpath, 'w')
json.dump(ds,outf)
outf.close()


这个脚本正常放在编辑器里面运行即可。

运行完结束,会在你的输出路径下生成一个文件夹:


6aeb7311653142d29862dd01050fb593.png


里面有个json数据:


2d305d9d7cee44cab407d0fbcf873745.png


数据信息比较简单,只有nx(经度的大小),ny(纬度的大小)以及最大值:


image.png


ok,以上就是完整的过程,最终将得到的json数据通过.js脚本运行就可以部署到网页上了,简单试了一下,大概如下图所示,可以根据需要自行更改设置:


c1e2fec740204db19850066aa7dc30dd.png


水平有限,本人对于NCL脚本不太熟悉,可能有些代码写的比较复杂,欢迎指正!!!


            一个努力学习python的ocean er
              水平有限,欢迎指正!!!
              欢迎评论、收藏、点赞、转发、关注。
            关注我不后悔,记录学习进步的过程~~
相关文章
|
7天前
|
数据挖掘 Shell 测试技术
怎么用Python解析HTML轻松搞定网页数据
**Python解析HTML摘要** 本文介绍了使用Python处理HTML的常见需求,如数据提取、网络爬虫和分析,并讨论了三种解析方法。正则表达式适用于简单匹配,但对复杂HTML不理想;BeautifulSoup提供简单API,适合多数情况;lxml结合XPath,适合处理大型复杂文档。示例展示了如何用这些方法提取链接。
|
7天前
|
数据采集 自然语言处理 大数据
​「Python大数据」词频数据渲染词云图导出HTML
使用Python,本文展示数据聚类和办公自动化,焦点在于通过jieba分词处理VOC数据,构建词云图并以HTML保存。`wordCloud.py`脚本中,借助pyecharts生成词云,如图所示,关键词如"Python"、"词云"等。示例代码创建了词云图实例,添加词频数据,并输出到"wordCloud.html"。
18 1
​「Python大数据」词频数据渲染词云图导出HTML
|
2天前
|
算法 数据挖掘 数据处理
搜索新境界:Python二分查找变种实战,精准定位数据不是梦!
【7月更文挑战第13天】二分查找算法以O(log n)效率在有序数组中查找数据。基础算法通过不断分割数组对比中间元素。Python实现变种包括:1) 查找目标值的第一个出现位置,找到后向左搜索;2) 查找目标值的最后一个出现位置,找到后向右搜索。这些变种在数据分析和索引构建等场景中极具价值,提升处理效率。
|
3天前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
【7月更文挑战第12天】归并排序是高效稳定的排序算法,采用分治策略。Python 实现包括递归地分割数组及合并已排序部分。示例代码展示了如何将 `[12, 11, 13, 5, 6]` 分割并归并成有序数组 `[5, 6, 11, 12, 13]`。虽然 $O(n log n)$ 时间复杂度优秀,但需额外空间,适合大规模数据排序。对于小规模数据,可考虑其他算法。**
15 4
|
2天前
|
数据格式 Python
Python代码示例,读取excel表格,将行数据转为列数据。(10)
【7月更文挑战第10天】Python代码示例,读取excel表格,将行数据转为列数据。
16 2
|
5天前
|
算法 Python
深度剖析!Python中图的DFS与BFS遍历,让你的数据搜索快到飞起
【7月更文挑战第10天】在数据结构和算法中,图遍历是核心概念,Python支持DFS和BFS来探索图。DFS递归深入节点,利用栈,先访问深处;BFS使用队列,层次遍历,先访问最近节点。
18 1
|
4天前
|
机器学习/深度学习 数据采集 数据可视化
Python实现支持向量机SVM分类模型线性SVM决策过程的可视化项目实战
Python实现支持向量机SVM分类模型线性SVM决策过程的可视化项目实战
Python实现支持向量机SVM分类模型线性SVM决策过程的可视化项目实战
|
7天前
|
存储 JSON JavaScript
【Python】已完美解决:TypeError: the JSON object must be str, bytes or bytearray, not dict
【Python】已完美解决:TypeError: the JSON object must be str, bytes or bytearray, not dict
10 1
|
7天前
|
数据挖掘 Python
利用Python进行数据分析PDF下载经典数据分享推荐
**Python数据分析大师作,Wes McKinney亲著,详述数据操作、清洗与分析。第2版面向Python 3.6,涵盖pandas、NumPy、IPython和Jupyter更新,实战案例丰富;第3版已升级至Python 3.10和pandas 1.4,继续引领数据科学潮流。[PDF下载](https://zhangfeidezhu.com/?p=337)**
15 0
利用Python进行数据分析PDF下载经典数据分享推荐
|
1天前
|
数据可视化 Python
时间序列分析是一种统计方法,用于分析随时间变化的数据序列。在金融、经济学、气象学等领域,时间序列分析被广泛用于预测未来趋势、检测异常值、理解周期性模式等。在Python中,`statsmodels`模块是一个强大的工具,用于执行各种时间序列分析任务。
时间序列分析是一种统计方法,用于分析随时间变化的数据序列。在金融、经济学、气象学等领域,时间序列分析被广泛用于预测未来趋势、检测异常值、理解周期性模式等。在Python中,`statsmodels`模块是一个强大的工具,用于执行各种时间序列分析任务。
7 0

相关实验场景

更多