python绘图--由逐日风场数据计算月平均风场数据并绘制二维填色图

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: python绘图--由逐日风场数据计算月平均风场数据并绘制二维填色图

前言



  • 如下图所示,现有1月逐日的一天四次的风场资料,现需要计算1月月平均数据并绘制二维空间填色图
  • 处理思路如下:

1、通过for循环读取数据

2、对于读取的日数据按照时间维求平均,将一天四次的资料处理为日平均资料

3、读取风速分量,将一个月内所以日平均资料存到一个空矩阵中

4、计算存储的风速矩阵,按照时间维求平均得到月平均数据

5、将月平均数据进行绘图

  • 注意点:
  • 对于数据名称比较统一,使用字符串进行循环读取
  • 考虑到数据大小,可以在读取数据时截取部分区域,节省时间
  • 先读取一个数据查看要设置的矩阵的size


918d196ecd414c0cbd9c3c5a2c58b69f.png

4229c09cba014425aee1c9644da732eb.png


code:


# -*- coding: utf-8 -*-
"""
Created on %(date)s
@author: %(jixianpu)s
Email : 211311040008@hhu.edu.cn
introduction : keep learning althongh walk slowly
"""
##########导入库###############################################################
import xarray as xr
import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.ticker import LongitudeFormatter,LatitudeFormatter
# import glob
##########导入文件、创建空矩阵用来存储日数据################################
str0 = 'D:\mql\wind\\'
str1 = 'CCMP_Wind_Analysis_200001'
str2 = '_V02.0_L3.0_RSS.nc'
u_mean=np.zeros((160,200,31))
u_mean[:] = np.nan
v_mean=np.zeros((160,200,31))
v_mean[:] = np.nan
##########循环读入日数据、将存储的日数据求平均,得到月平均########################
i = 0
for i in range(1,31):
    file=str0+str1+'%02.0f'%(i)+str2
    da=xr.open_dataset(file).sel(longitude=slice(130,180),latitude=slice(-20,20)) #按照经纬度区域读取数据
    da_m = da.mean('time')  #  对数据的时间那一维求平均,使得一天四次的数据为一天一次
    lon  = da.longitude.data
    lat  = da.latitude.data
    u_mean[:,:,i] =da_m.uwnd  #  读取u 分量
    v_mean[:,:,i] =da_m.uwnd  #  读取v 分量
    x,y=np.meshgrid(lon.data,lat.data)
    i=i+1
#################计算月平均数据,按照时间纬度计算################################
u_monthlymean =np.nanmean(u_mean,axis=2)
v_monthlymean =np.nanmean(v_mean,axis=2)
##########读取经纬度############################################################
##########计算月均的实际风速####################################################
w =  np.sqrt(u_monthlymean*u_monthlymean+v_monthlymean*v_monthlymean)
##########封装绘图函数、保护绘图区域、投影、陆地、标题、字体大小#########################
def make_map(ax, title):
    # set_extent  set crs
    ax.set_extent(box, crs=ccrs.PlateCarree())
    land = cfeature.NaturalEarthFeature('physical',
                                        'land',
                                        scale,
                                        edgecolor='grey', 
                                        facecolor='white'
                                        ,zorder=2
                                        )
    ax.add_feature(land)  # set land color
    ax.coastlines(scale)  # set coastline resolution
    # set coordinate axis
    ax.set_xticks(np.arange(box[0],box[1]+10, xstep),crs=ccrs.PlateCarree())
    ax.set_yticks(np.arange(box[2], box[3]+10, ystep),crs=ccrs.PlateCarree())
    ax.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label =False))#经度0不加标识
    ax.yaxis.set_major_formatter(LatitudeFormatter())
    # plt.tick_params(labelsize=25)
    ax.set_title(title, fontsize=20, loc='left',pad=12)
    # ax.yaxis.set_minor_locator(AutoMinorLocator(5))
    # ax.xaxis.set_minor_locator(AutoMinorLocator(10))
    ax.tick_params(which='minor', 
                    direction='out', length=4,width=0.59,
                    right=True, top=True)
    ax.tick_params(which='major', 
                    direction='out', 
                    length=8,
                    width=0.99, 
                    pad=3, 
                    labelsize=12,
                    bottom=True, left=True, right=True, top=True)
    return ax
##########绘图区域、投影陆地的分辨率、经度、纬度的间隔############################
box = [130, 180, -20, 20]  
scale = '50m'            
xstep, ystep = 10, 10 
##########进行绘图,设置一个画板##################################
fig =plt.figure(figsize=(12,10),dpi=100)
ax=fig.add_subplot(1,1,1,projection=ccrs.PlateCarree(central_longitude=180))
make_map(ax,'monthly_mean-surface winds')
ax.set_xlabel('Longitude',fontsize=14)  # 添加经度标签
ax.set_ylabel('Latitude',fontsize=14)   # 添加纬度标签
step=10# 设置风场的数据读取间隔
c=ax.contourf(lon,lat,w,transform=ccrs.PlateCarree(),extend='both')  #绘制填色图
ax.quiver(x[::step,::step],y[::step,::step],u_monthlymean[::step,::step],v_monthlymean[::step,::step],pivot='mid',transform=ccrs.PlateCarree(),
          width=0.002,scale=200,headlength=5,headwidth=4,
        )  #绘制风场箭头
#添加colorbar
cb=fig.colorbar(c,shrink=0.75,pad=0.04)   
cb.ax.tick_params(labelsize=10)  #设置colorbar的字体大小
cb.ax.set_title('$m/s$',fontsize=15)  #设置colorbar的标题,字体大小


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
22天前
|
数据采集 JSON 测试技术
如何在Python中高效实现CSV到JSON的数据转换
在实际项目中,数据格式转换是常见问题,尤其从CSV到JSON的转换。本文深入探讨了多种转换方法,涵盖Python基础实现、数据预处理、错误处理、性能优化及调试验证技巧。通过分块处理、并行处理等手段提升大文件转换效率,并介绍如何封装为命令行工具或Web API,实现自动化批量处理。关键点包括基础实现、数据清洗、异常捕获、性能优化和单元测试,确保转换流程稳定高效。
143 83
|
11天前
|
JSON API 数据格式
Python 请求微店商品详情数据 API 接口
微店开放平台允许开发者通过API获取商品详情数据。使用Python请求微店商品详情API的主要步骤包括:1. 注册并申请API权限,获得app_key和app_secret;2. 确定API接口地址与请求参数,如商品ID;3. 生成签名确保请求安全合法;4. 使用requests库发送HTTP请求获取数据;5. 处理返回的JSON格式响应数据。开发时需严格遵循微店API文档要求。
|
7天前
|
数据采集 XML 存储
Python爬虫实战:一键采集电商数据,掌握市场动态!
这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。
|
10天前
|
JSON 监控 API
python语言采集淘宝商品详情数据,json数据示例返回
通过淘宝开放平台的API接口,开发者可以轻松获取商品详情数据,并利用这些数据进行商品分析、价格监控、库存管理等操作。本文提供的示例代码和JSON数据解析方法,可以帮助您快速上手淘宝商品数据的采集与处理。
|
15天前
|
数据采集 存储 机器学习/深度学习
探索Python的力量:如何处理大数据
探索Python的力量:如何处理大数据
33 7
|
15天前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
22天前
|
数据采集 存储 前端开发
用Python抓取亚马逊动态加载数据,一文读懂
用Python抓取亚马逊动态加载数据,一文读懂
|
14天前
|
存储 数据采集 JSON
Python爬取某云热歌榜:解析动态加载的歌曲数据
Python爬取某云热歌榜:解析动态加载的歌曲数据
|
4月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
130 0
|
4月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
81 2

热门文章

最新文章