python 对海洋、气象数据进行滤波--带通滤波处理

简介: 如何使用python对其海洋、气象数据进行带通滤波处理,得到我们想要的信号呢?

如何使用python对其海洋、气象数据进行带通滤波处理,得到我们想要的信号呢?



这里以scipy.signal.butter滤波器为例,如何对于气象海洋数据做带通滤波处理进行简单讲解,库的官方说明文档链接如下:

butter滤波器


主要实现过程如下所示:

b,a=scipy.signal.butter(N, Wn, btype='band', analog=False, output='ba', fs=None)
filter_result=signal.filtfilt(b, a, data)


里面主要需要关注的为:

  • N:滤波器阶数
  • Wn:频率 (这里我理解的就是你要滤出的时间天数)
  • btype:滤波器类型,lowpass,  highpass, bandpass, bandstop分别为高通,低通,带通、带阻,默认为低通


构造滤波器并传入相应参数后,一般会返回两个变量:a(分母系数)、b(分子系数),之后通过函数signal.filtfilt(),传入相应变量、数据,就可以得到滤波后的数据了。


对于阶数N来说,我的理解是一般不用设置太高,太高的话可能会滤掉过多的信号,我这里一般使用阶数:3、4


以上就是关于滤波的实现原理,下面主要讲解一下关于带通滤波的频率的理解,因为发现大部分的教程示例不适用于海洋、气象数据滤波的处理,没那么通俗易懂。


举个带通滤波的例子



假如想要通过滤波得到天气尺度3-10天的信号,这儿肯定需要做带通滤波了,那么如何计算Wn呢?


首先,先明白Wn的计算公式,通过官网说明可以得到:

Wn=2*截止频率/采样频率


频率是什么呢,其实很简单,频率=1/周期,可以理解为就是我们数据周期的倒数。

因为天气尺度的范围为3-10天,我们默认周期的单位为:1天,以下基于周期为1天的前提进行计算:


相对于周期为一天来说,


  • 假如你的数据是daily的,一天就一个,那么你的数据周期就是1,采样频率就等于1/1=1,还是1
  • 假如你的数据是一天四个时次的,那么一个数据的周期就是0.25,那么采样频率就是1/0.25=4


截止频率是什么呢?与上面采样频率道理类似,还是以相对于周期为一天来说:

3天的截止频率就是1/3,10天的截止频率就是1/10

所以对于3-10天的带通滤波,如果数据基于周期为一天的话,Wn=[2/10,2/3]

如果是30-60天的带通滤波,Wn=[2/60,2/30]


注意:对于数字滤波器,如果没有指定 fs,则将 Wn 单位标准化为0到1,所以检验我们算的Wn有没有错误,可以看他的范围是否符合要求。

这样下面的处理就比较简单了,传入需要滤波的数据即可了:


b, a = signal.butter(3, [2/10,2/3], 'bandpass',axis=time那一维)
filter_data = signal.filtfilt(b, a, origin_data)


低通和高通滤波比较简单这里就不再阐述了

以上是对于python对于海洋、气象数据进行带通滤波处理时的一些简单理解,水平有限,欢迎交流!


                      一个努力学习python的海气人
                      水平有限,欢迎指正!!!
                        欢迎评论、收藏、点赞、转发、关注。
                        关注我不后悔,记录学习进步的过程~~


相关文章
|
10天前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
2月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
2月前
|
JSON API 数据格式
Python采集京东商品评论API接口示例,json数据返回
下面是一个使用Python采集京东商品评论的完整示例,包括API请求、JSON数据解析
|
4月前
|
JSON 算法 API
1688商品详情API实战:Python调用全流程与数据解析技巧
本文介绍了1688电商平台的商品详情API接口,助力电商从业者高效获取商品信息。接口可返回商品基础属性、价格体系、库存状态、图片描述及商家详情等多维度数据,支持全球化语言设置。通过Python示例代码展示了如何调用该接口,帮助用户快速上手,适用于选品分析、市场研究等场景。
|
5月前
|
数据采集 NoSQL 关系型数据库
Python爬虫去重策略:增量爬取与历史数据比对
Python爬虫去重策略:增量爬取与历史数据比对
|
12天前
|
JSON 安全 API
Python处理JSON数据的最佳实践:从基础到进阶的实用指南
JSON作为数据交换通用格式,广泛应用于Web开发与API交互。本文详解Python处理JSON的10个关键实践,涵盖序列化、复杂结构处理、性能优化与安全编程,助开发者高效应对各类JSON数据挑战。
70 1
|
2月前
|
XML Linux 区块链
Python提取Word表格数据教程(含.doc/.docx)
本文介绍了使用LibreOffice和python-docx库处理DOC文档表格的方法。首先需安装LibreOffice进行DOC到DOCX的格式转换,然后通过python-docx读取和修改表格数据。文中提供了详细的代码示例,包括格式转换函数、表格读取函数以及修改保存功能。该方法适用于Windows和Linux系统,解决了老旧DOC格式文档的处理难题,为需要处理历史文档的用户提供了实用解决方案。
117 1
|
2月前
|
缓存 监控 API
1688平台开放接口实战:如何通过API获取店铺所有商品数据(Python示列)
本文介绍如何通过1688开放平台API接口获取店铺所有商品,涵盖准备工作、接口调用及Python代码实现,适用于商品同步与数据监控场景。
|
4月前
|
Web App开发 数据采集 JavaScript
动态网页爬取:Python如何获取JS加载的数据?
动态网页爬取:Python如何获取JS加载的数据?
746 58
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
63 4

推荐镜像

更多