python 对海洋、气象数据进行滤波--带通滤波处理

简介: 如何使用python对其海洋、气象数据进行带通滤波处理,得到我们想要的信号呢?

如何使用python对其海洋、气象数据进行带通滤波处理,得到我们想要的信号呢?



这里以scipy.signal.butter滤波器为例,如何对于气象海洋数据做带通滤波处理进行简单讲解,库的官方说明文档链接如下:

butter滤波器


主要实现过程如下所示:

b,a=scipy.signal.butter(N, Wn, btype='band', analog=False, output='ba', fs=None)
filter_result=signal.filtfilt(b, a, data)


里面主要需要关注的为:

  • N:滤波器阶数
  • Wn:频率 (这里我理解的就是你要滤出的时间天数)
  • btype:滤波器类型,lowpass,  highpass, bandpass, bandstop分别为高通,低通,带通、带阻,默认为低通


构造滤波器并传入相应参数后,一般会返回两个变量:a(分母系数)、b(分子系数),之后通过函数signal.filtfilt(),传入相应变量、数据,就可以得到滤波后的数据了。


对于阶数N来说,我的理解是一般不用设置太高,太高的话可能会滤掉过多的信号,我这里一般使用阶数:3、4


以上就是关于滤波的实现原理,下面主要讲解一下关于带通滤波的频率的理解,因为发现大部分的教程示例不适用于海洋、气象数据滤波的处理,没那么通俗易懂。


举个带通滤波的例子



假如想要通过滤波得到天气尺度3-10天的信号,这儿肯定需要做带通滤波了,那么如何计算Wn呢?


首先,先明白Wn的计算公式,通过官网说明可以得到:

Wn=2*截止频率/采样频率


频率是什么呢,其实很简单,频率=1/周期,可以理解为就是我们数据周期的倒数。

因为天气尺度的范围为3-10天,我们默认周期的单位为:1天,以下基于周期为1天的前提进行计算:


相对于周期为一天来说,


  • 假如你的数据是daily的,一天就一个,那么你的数据周期就是1,采样频率就等于1/1=1,还是1
  • 假如你的数据是一天四个时次的,那么一个数据的周期就是0.25,那么采样频率就是1/0.25=4


截止频率是什么呢?与上面采样频率道理类似,还是以相对于周期为一天来说:

3天的截止频率就是1/3,10天的截止频率就是1/10

所以对于3-10天的带通滤波,如果数据基于周期为一天的话,Wn=[2/10,2/3]

如果是30-60天的带通滤波,Wn=[2/60,2/30]


注意:对于数字滤波器,如果没有指定 fs,则将 Wn 单位标准化为0到1,所以检验我们算的Wn有没有错误,可以看他的范围是否符合要求。

这样下面的处理就比较简单了,传入需要滤波的数据即可了:


b, a = signal.butter(3, [2/10,2/3], 'bandpass',axis=time那一维)
filter_data = signal.filtfilt(b, a, origin_data)


低通和高通滤波比较简单这里就不再阐述了

以上是对于python对于海洋、气象数据进行带通滤波处理时的一些简单理解,水平有限,欢迎交流!


                      一个努力学习python的海气人
                      水平有限,欢迎指正!!!
                        欢迎评论、收藏、点赞、转发、关注。
                        关注我不后悔,记录学习进步的过程~~


相关文章
|
27天前
|
机器学习/深度学习 新能源 调度
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
153 1
|
30天前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
19天前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
22天前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
71 0
|
2月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
2月前
|
JSON API 数据格式
Python采集京东商品评论API接口示例,json数据返回
下面是一个使用Python采集京东商品评论的完整示例,包括API请求、JSON数据解析
|
4天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
6天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
JSON 安全 API
Python处理JSON数据的最佳实践:从基础到进阶的实用指南
JSON作为数据交换通用格式,广泛应用于Web开发与API交互。本文详解Python处理JSON的10个关键实践,涵盖序列化、复杂结构处理、性能优化与安全编程,助开发者高效应对各类JSON数据挑战。
120 1
|
15天前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。

推荐镜像

更多