【Java并发】ReadWriteLock读写锁的使用

简介: 【Java并发】ReadWriteLock读写锁的使用
说到Java并发编程,很多开发第一个想到同时也是经常常用的肯定是Synchronized,但是小编这里提出一个问题,Synchronized存在明显的一个性能问题就是读与读之间互斥,简言之就是,我们编程想要实现的最好效果是,可以做到读和读互不影响,读和写互斥,写和写互斥,提高读写的效率,如何实现呢?

Java并发包中ReadWriteLock是一个接口,主要有两个方法,如下:

public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading
     */
    Lock readLock();

    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing
     */
    Lock writeLock();
}

ReadWriteLock管理一组锁,一个是只读的锁,一个是写锁。
Java并发库中ReetrantReadWriteLock实现了ReadWriteLock接口并添加了可重入的特性。
在具体讲解ReetrantReadWriteLock的使用方法前,我们有必要先对其几个特性进行一些深入学习了解。

1. ReetrantReadWriteLock特性说明

1.1 获取锁顺序

  • 非公平模式(默认)

当以非公平初始化时,读锁和写锁的获取的顺序是不确定的。非公平锁主张竞争获取,可能会延缓一个或多个读或写线程,但是会比公平锁有更高的吞吐量。

  • 公平模式

当以公平模式初始化时,线程将会以队列的顺序获取锁。当当前线程释放锁后,等待时间最长的写锁线程就会被分配写锁;或者有一组读线程组等待时间比写线程长,那么这组读线程组将会被分配读锁。

1.2 可重入

什么是可重入锁,不可重入锁呢?"重入"字面意思已经很明显了,就是可以重新进入。可重入锁,就是说一个线程在获取某个锁后,还可以继续获取该锁,即允许一个线程多次获取同一个锁。比如synchronized内置锁就是可重入的,如果A类有2个synchornized方法method1和method2,那么method1调用method2是允许的。显然重入锁给编程带来了极大的方便。假如内置锁不是可重入的,那么导致的问题是:1个类的synchornized方法不能调用本类其他synchornized方法,也不能调用父类中的synchornized方法。与内置锁对应,JDK提供的显示锁ReentrantLock也是可以重入的,这里通过一个例子着重说下可重入锁的释放需要的事儿。

package test;

import java.util.concurrent.locks.ReentrantReadWriteLock;

public class Test1 {

    public static void main(String[] args) throws InterruptedException {
        final ReentrantReadWriteLock  lock = new ReentrantReadWriteLock ();
        Thread t = new Thread(new Runnable() {
            @Override
            public void run() {
                lock.writeLock().lock();
                System.out.println("Thread real execute");
                lock.writeLock().unlock();
            }
        });

        lock.writeLock().lock();
        lock.writeLock().lock();
        t.start();
        Thread.sleep(200);
        
        System.out.println("realse one once");
        lock.writeLock().unlock();
    }

}

运行结果.png
从运行结果中,可以看到,程序并未执行线程的run方法,由此我们可知,上面的代码会出现死锁,因为主线程2次获取了锁,但是却只释放1次锁,导致线程t永远也不能获取锁。一个线程获取多少次锁,就必须释放多少次锁。这对于内置锁也是适用的,每一次进入和离开synchornized方法(代码块),就是一次完整的锁获取和释放。
再次添加一次unlock之后的运行结果.png

1.3 锁降级

要实现一个读写锁,需要考虑很多细节,其中之一就是锁升级和锁降级的问题。什么是升级和降级呢?ReadWriteLock的javadoc有一段话:

Can the write lock be downgraded to a read lock without allowing an intervening writer? Can a read lock be upgraded to a write lock, in preference to other waiting readers or writers?

翻译过来的结果是:在不允许中间写入的情况下,写入锁可以降级为读锁吗?读锁是否可以升级为写锁,优先于其他等待的读取或写入操作?简言之就是说,锁降级:从写锁变成读锁;锁升级:从读锁变成写锁,ReadWriteLock是否支持呢?让我们带着疑问,进行一些Demo 测试代码验证。

Test Code 1

/**
 *Test Code 1
 **/
package test;

import java.util.concurrent.locks.ReentrantReadWriteLock;

public class Test1 {

    public static void main(String[] args) {
        ReentrantReadWriteLock rtLock = new ReentrantReadWriteLock();
        rtLock.readLock().lock();
        System.out.println("get readLock.");
        rtLock.writeLock().lock();
        System.out.println("blocking");
    }
}

Test Code 1 Result

TestCode1 Result.png

结论:上面的测试代码会产生死锁,因为同一个线程中,在没有释放读锁的情况下,就去申请写锁,这属于锁升级,ReentrantReadWriteLock是不支持的

Test Code 2

/**
 *Test Code 2
 **/
package test;

import java.util.concurrent.locks.ReentrantReadWriteLock;

public class Test2 {

    public static void main(String[] args) {
        ReentrantReadWriteLock rtLock = new ReentrantReadWriteLock();  
        rtLock.writeLock().lock();  
        System.out.println("writeLock");  
          
        rtLock.readLock().lock();  
        System.out.println("get read lock");  
    }
}

Test Code 2 Result

TestCode2 Result.png
结论:ReentrantReadWriteLock支持锁降级,上面代码不会产生死锁。这段代码虽然不会导致死锁,但没有正确的释放锁。从写锁降级成读锁,并不会自动释放当前线程获取的写锁,仍然需要显示的释放,否则别的线程永远也获取不到写锁。

2. ReetrantReadWriteLock对比使用

2.1 Synchronized实现

在使用ReetrantReadWriteLock实现锁机制前,我们先看一下,多线程同时读取文件时,用synchronized实现的效果

package test;

/**
 * 
 * synchronized实现
 * @author itbird
 *
 */
public class ReadAndWriteLockTest {

    public synchronized static void get(Thread thread) {
        System.out.println("start time:" + System.currentTimeMillis());
        for (int i = 0; i < 5; i++) {
            try {
                Thread.sleep(20);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(thread.getName() + ":正在进行读操作……");
        }
        System.out.println(thread.getName() + ":读操作完毕!");
        System.out.println("end time:" + System.currentTimeMillis());
    }

    public static void main(String[] args) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                get(Thread.currentThread());
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                get(Thread.currentThread());
            }
        }).start();
    }

}

让我们看一下运行结果:
synchronized实现的效果结果.png
从运行结果可以看出,两个线程的读操作是顺序执行的,整个过程大概耗时200ms。

2.2 ReetrantReadWriteLock实现

package test;

import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * 
 * ReetrantReadWriteLock实现
 * @author itbird
 *
 */
public class ReadAndWriteLockTest {
    ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

    public static void get(Thread thread) {
        lock.readLock().lock();
        System.out.println("start time:" + System.currentTimeMillis());
        for (int i = 0; i < 5; i++) {
            try {
                Thread.sleep(20);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(thread.getName() + ":正在进行读操作……");
        }
        System.out.println(thread.getName() + ":读操作完毕!");
        System.out.println("end time:" + System.currentTimeMillis());
        lock.readLock().unlock();
    }

    public static void main(String[] args) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                get(Thread.currentThread());
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                get(Thread.currentThread());
            }
        }).start();
    }

}

让我们看一下运行结果:
ReetrantReadWriteLock实现.png
从运行结果可以看出,两个线程的读操作是同时执行的,整个过程大概耗时100ms。
通过两次实验的对比,我们可以看出来,ReetrantReadWriteLock的效率明显高于Synchronized关键字。

3. ReetrantReadWriteLock读写锁互斥关系

通过上面的测试代码,我们也可以延伸得出一个结论,ReetrantReadWriteLock读锁使用共享模式,即:同时可以有多个线程并发地读数据。但是另一个问题来了,写锁之间是共享模式还是互斥模式?读写锁之间是共享模式还是互斥模式呢?下面让我们通过Demo进行一一验证吧。

3.1 ReetrantReadWriteLock读写锁关系

package test;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * 
 * ReetrantReadWriteLock实现
 * @author itbird
 *
 */
public class ReadAndWriteLockTest {

    public static ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

    public static void main(String[] args) {
        //同时读、写
        ExecutorService service = Executors.newCachedThreadPool();
        service.execute(new Runnable() {
            @Override
            public void run() {
                readFile(Thread.currentThread());
            }
        });
        service.execute(new Runnable() {
            @Override
            public void run() {
                writeFile(Thread.currentThread());
            }
        });
    }

    // 读操作
    public static void readFile(Thread thread) {
        lock.readLock().lock();
        boolean readLock = lock.isWriteLocked();
        if (!readLock) {
            System.out.println("当前为读锁!");
        }
        try {
            for (int i = 0; i < 5; i++) {
                try {
                    Thread.sleep(20);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(thread.getName() + ":正在进行读操作……");
            }
            System.out.println(thread.getName() + ":读操作完毕!");
        } finally {
            System.out.println("释放读锁!");
            lock.readLock().unlock();
        }
    }

    // 写操作
    public static void writeFile(Thread thread) {
        lock.writeLock().lock();
        boolean writeLock = lock.isWriteLocked();
        if (writeLock) {
            System.out.println("当前为写锁!");
        }
        try {
            for (int i = 0; i < 5; i++) {
                try {
                    Thread.sleep(20);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(thread.getName() + ":正在进行写操作……");
            }
            System.out.println(thread.getName() + ":写操作完毕!");
        } finally {
            System.out.println("释放写锁!");
            lock.writeLock().unlock();
        }
    }
}

运行结果:
运行结果.png
结论:读写锁的实现必须确保写操作对读操作的内存影响。换句话说,一个获得了读锁的线程必须能看到前一个释放的写锁所更新的内容,读写锁之间为互斥。

3.2 ReetrantReadWriteLock写锁关系

package test;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * 
 * ReetrantReadWriteLock实现
 * @author itbird
 *
 */
public class ReadAndWriteLockTest {

    public static ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

    public static void main(String[] args) {
        //同时写
        ExecutorService service = Executors.newCachedThreadPool();
        service.execute(new Runnable() {
            @Override
            public void run() {
                writeFile(Thread.currentThread());
            }
        });
        service.execute(new Runnable() {
            @Override
            public void run() {
                writeFile(Thread.currentThread());
            }
        });
    }

    // 读操作
    public static void readFile(Thread thread) {
        lock.readLock().lock();
        boolean readLock = lock.isWriteLocked();
        if (!readLock) {
            System.out.println("当前为读锁!");
        }
        try {
            for (int i = 0; i < 5; i++) {
                try {
                    Thread.sleep(20);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(thread.getName() + ":正在进行读操作……");
            }
            System.out.println(thread.getName() + ":读操作完毕!");
        } finally {
            System.out.println("释放读锁!");
            lock.readLock().unlock();
        }
    }

    // 写操作
    public static void writeFile(Thread thread) {
        lock.writeLock().lock();
        boolean writeLock = lock.isWriteLocked();
        if (writeLock) {
            System.out.println("当前为写锁!");
        }
        try {
            for (int i = 0; i < 5; i++) {
                try {
                    Thread.sleep(20);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(thread.getName() + ":正在进行写操作……");
            }
            System.out.println(thread.getName() + ":写操作完毕!");
        } finally {
            System.out.println("释放写锁!");
            lock.writeLock().unlock();
        }
    }
}

运行结果:
运行结果.png

4. 总结

1.Java并发库中ReetrantReadWriteLock实现了ReadWriteLock接口并添加了可重入的特性
2.ReetrantReadWriteLock读写锁的效率明显高于synchronized关键字
3.ReetrantReadWriteLock读写锁的实现中,读锁使用共享模式;写锁使用独占模式,换句话说,读锁可以在没有写锁的时候被多个线程同时持有,写锁是独占的
4.ReetrantReadWriteLock读写锁的实现中,需要注意的,当有读锁时,写锁就不能获得;而当有写锁时,除了获得写锁的这个线程可以获得读锁外,其他线程不能获得读锁

目录
相关文章
|
4月前
|
安全 Java 调度
Java编程时多线程操作单核服务器可以不加锁吗?
Java编程时多线程操作单核服务器可以不加锁吗?
51 2
|
2月前
|
缓存 Java
java中的公平锁、非公平锁、可重入锁、递归锁、自旋锁、独占锁和共享锁
本文介绍了几种常见的锁机制,包括公平锁与非公平锁、可重入锁与不可重入锁、自旋锁以及读写锁和互斥锁。公平锁按申请顺序分配锁,而非公平锁允许插队。可重入锁允许线程多次获取同一锁,避免死锁。自旋锁通过循环尝试获取锁,减少上下文切换开销。读写锁区分读锁和写锁,提高并发性能。文章还提供了相关代码示例,帮助理解这些锁的实现和使用场景。
java中的公平锁、非公平锁、可重入锁、递归锁、自旋锁、独占锁和共享锁
|
2月前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
2月前
|
Java 开发者
Java 中的锁是什么意思,有哪些分类?
在Java多线程编程中,锁用于控制多个线程对共享资源的访问,确保数据一致性和正确性。本文探讨锁的概念、作用及分类,包括乐观锁与悲观锁、自旋锁与适应性自旋锁、公平锁与非公平锁、可重入锁和读写锁,同时提供使用锁时的注意事项,帮助开发者提高程序性能和稳定性。
120 3
|
2月前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
2月前
|
Java 数据库连接 数据库
如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面
本文介绍了如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面。通过合理配置初始连接数、最大连接数和空闲连接超时时间,确保系统性能和稳定性。文章还探讨了同步阻塞、异步回调和信号量等并发控制策略,并提供了异常处理的最佳实践。最后,给出了一个简单的连接池示例代码,并推荐使用成熟的连接池框架(如HikariCP、C3P0)以简化开发。
75 2
|
3月前
|
Java
Java 中锁的主要类型
【10月更文挑战第10天】
|
3月前
|
Java
【编程进阶知识】揭秘Java多线程:并发与顺序编程的奥秘
本文介绍了Java多线程编程的基础,通过对比顺序执行和并发执行的方式,展示了如何使用`run`方法和`start`方法来控制线程的执行模式。文章通过具体示例详细解析了两者的异同及应用场景,帮助读者更好地理解和运用多线程技术。
45 1
|
3月前
|
XML JavaScript Java
java与XML文件的读写
java与XML文件的读写
40 3
|
4月前
|
算法 Java 关系型数据库
Java中到底有哪些锁
【9月更文挑战第24天】在Java中,锁主要分为乐观锁与悲观锁、自旋锁与自适应自旋锁、公平锁与非公平锁、可重入锁以及独享锁与共享锁。乐观锁适用于读多写少场景,通过版本号或CAS算法实现;悲观锁适用于写多读少场景,通过加锁保证数据一致性。自旋锁与自适应自旋锁通过循环等待减少线程挂起和恢复的开销,适用于锁持有时间短的场景。公平锁按请求顺序获取锁,适合等待敏感场景;非公平锁性能更高,适合频繁加解锁场景。可重入锁支持同一线程多次获取,避免死锁;独享锁与共享锁分别用于独占和并发读场景。