说到Java并发编程,很多开发第一个想到同时也是经常常用的肯定是Synchronized,但是小编这里提出一个问题,Synchronized存在明显的一个性能问题就是读与读之间互斥,简言之就是,我们编程想要实现的最好效果是,可以做到读和读互不影响,读和写互斥,写和写互斥,提高读写的效率,如何实现呢?
Java并发包中ReadWriteLock是一个接口,主要有两个方法,如下:
public interface ReadWriteLock {
/**
* Returns the lock used for reading.
*
* @return the lock used for reading
*/
Lock readLock();
/**
* Returns the lock used for writing.
*
* @return the lock used for writing
*/
Lock writeLock();
}
ReadWriteLock管理一组锁,一个是只读的锁,一个是写锁。
Java并发库中ReetrantReadWriteLock实现了ReadWriteLock接口并添加了可重入的特性。
在具体讲解ReetrantReadWriteLock的使用方法前,我们有必要先对其几个特性进行一些深入学习了解。
1. ReetrantReadWriteLock特性说明
1.1 获取锁顺序
- 非公平模式(默认)
当以非公平初始化时,读锁和写锁的获取的顺序是不确定的。非公平锁主张竞争获取,可能会延缓一个或多个读或写线程,但是会比公平锁有更高的吞吐量。
- 公平模式
当以公平模式初始化时,线程将会以队列的顺序获取锁。当当前线程释放锁后,等待时间最长的写锁线程就会被分配写锁;或者有一组读线程组等待时间比写线程长,那么这组读线程组将会被分配读锁。
1.2 可重入
什么是可重入锁,不可重入锁呢?"重入"字面意思已经很明显了,就是可以重新进入。可重入锁,就是说一个线程在获取某个锁后,还可以继续获取该锁,即允许一个线程多次获取同一个锁。比如synchronized内置锁就是可重入的,如果A类有2个synchornized方法method1和method2,那么method1调用method2是允许的。显然重入锁给编程带来了极大的方便。假如内置锁不是可重入的,那么导致的问题是:1个类的synchornized方法不能调用本类其他synchornized方法,也不能调用父类中的synchornized方法。与内置锁对应,JDK提供的显示锁ReentrantLock也是可以重入的,这里通过一个例子着重说下可重入锁的释放需要的事儿。
package test;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class Test1 {
public static void main(String[] args) throws InterruptedException {
final ReentrantReadWriteLock lock = new ReentrantReadWriteLock ();
Thread t = new Thread(new Runnable() {
@Override
public void run() {
lock.writeLock().lock();
System.out.println("Thread real execute");
lock.writeLock().unlock();
}
});
lock.writeLock().lock();
lock.writeLock().lock();
t.start();
Thread.sleep(200);
System.out.println("realse one once");
lock.writeLock().unlock();
}
}
从运行结果中,可以看到,程序并未执行线程的run方法,由此我们可知,上面的代码会出现死锁,因为主线程2次获取了锁,但是却只释放1次锁,导致线程t永远也不能获取锁。一个线程获取多少次锁,就必须释放多少次锁。这对于内置锁也是适用的,每一次进入和离开synchornized方法(代码块),就是一次完整的锁获取和释放。
1.3 锁降级
要实现一个读写锁,需要考虑很多细节,其中之一就是锁升级和锁降级的问题。什么是升级和降级呢?ReadWriteLock的javadoc有一段话:
Can the write lock be downgraded to a read lock without allowing an intervening writer? Can a read lock be upgraded to a write lock, in preference to other waiting readers or writers?
翻译过来的结果是:在不允许中间写入的情况下,写入锁可以降级为读锁吗?读锁是否可以升级为写锁,优先于其他等待的读取或写入操作?简言之就是说,锁降级:从写锁变成读锁;锁升级:从读锁变成写锁,ReadWriteLock是否支持呢?让我们带着疑问,进行一些Demo 测试代码验证。
Test Code 1
/**
*Test Code 1
**/
package test;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class Test1 {
public static void main(String[] args) {
ReentrantReadWriteLock rtLock = new ReentrantReadWriteLock();
rtLock.readLock().lock();
System.out.println("get readLock.");
rtLock.writeLock().lock();
System.out.println("blocking");
}
}
Test Code 1 Result
结论:上面的测试代码会产生死锁,因为同一个线程中,在没有释放读锁的情况下,就去申请写锁,这属于锁升级,ReentrantReadWriteLock是不支持的。
Test Code 2
/**
*Test Code 2
**/
package test;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class Test2 {
public static void main(String[] args) {
ReentrantReadWriteLock rtLock = new ReentrantReadWriteLock();
rtLock.writeLock().lock();
System.out.println("writeLock");
rtLock.readLock().lock();
System.out.println("get read lock");
}
}
Test Code 2 Result
结论:ReentrantReadWriteLock支持锁降级,上面代码不会产生死锁。这段代码虽然不会导致死锁,但没有正确的释放锁。从写锁降级成读锁,并不会自动释放当前线程获取的写锁,仍然需要显示的释放,否则别的线程永远也获取不到写锁。
2. ReetrantReadWriteLock对比使用
2.1 Synchronized实现
在使用ReetrantReadWriteLock实现锁机制前,我们先看一下,多线程同时读取文件时,用synchronized实现的效果
package test;
/**
*
* synchronized实现
* @author itbird
*
*/
public class ReadAndWriteLockTest {
public synchronized static void get(Thread thread) {
System.out.println("start time:" + System.currentTimeMillis());
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(20);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(thread.getName() + ":正在进行读操作……");
}
System.out.println(thread.getName() + ":读操作完毕!");
System.out.println("end time:" + System.currentTimeMillis());
}
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
get(Thread.currentThread());
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
get(Thread.currentThread());
}
}).start();
}
}
让我们看一下运行结果:
从运行结果可以看出,两个线程的读操作是顺序执行的,整个过程大概耗时200ms。
2.2 ReetrantReadWriteLock实现
package test;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
*
* ReetrantReadWriteLock实现
* @author itbird
*
*/
public class ReadAndWriteLockTest {
ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
public static void get(Thread thread) {
lock.readLock().lock();
System.out.println("start time:" + System.currentTimeMillis());
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(20);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(thread.getName() + ":正在进行读操作……");
}
System.out.println(thread.getName() + ":读操作完毕!");
System.out.println("end time:" + System.currentTimeMillis());
lock.readLock().unlock();
}
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
get(Thread.currentThread());
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
get(Thread.currentThread());
}
}).start();
}
}
让我们看一下运行结果:
从运行结果可以看出,两个线程的读操作是同时执行的,整个过程大概耗时100ms。
通过两次实验的对比,我们可以看出来,ReetrantReadWriteLock的效率明显高于Synchronized关键字。
3. ReetrantReadWriteLock读写锁互斥关系
通过上面的测试代码,我们也可以延伸得出一个结论,ReetrantReadWriteLock读锁使用共享模式,即:同时可以有多个线程并发地读数据。但是另一个问题来了,写锁之间是共享模式还是互斥模式?读写锁之间是共享模式还是互斥模式呢?下面让我们通过Demo进行一一验证吧。
3.1 ReetrantReadWriteLock读写锁关系
package test;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
*
* ReetrantReadWriteLock实现
* @author itbird
*
*/
public class ReadAndWriteLockTest {
public static ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
public static void main(String[] args) {
//同时读、写
ExecutorService service = Executors.newCachedThreadPool();
service.execute(new Runnable() {
@Override
public void run() {
readFile(Thread.currentThread());
}
});
service.execute(new Runnable() {
@Override
public void run() {
writeFile(Thread.currentThread());
}
});
}
// 读操作
public static void readFile(Thread thread) {
lock.readLock().lock();
boolean readLock = lock.isWriteLocked();
if (!readLock) {
System.out.println("当前为读锁!");
}
try {
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(20);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(thread.getName() + ":正在进行读操作……");
}
System.out.println(thread.getName() + ":读操作完毕!");
} finally {
System.out.println("释放读锁!");
lock.readLock().unlock();
}
}
// 写操作
public static void writeFile(Thread thread) {
lock.writeLock().lock();
boolean writeLock = lock.isWriteLocked();
if (writeLock) {
System.out.println("当前为写锁!");
}
try {
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(20);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(thread.getName() + ":正在进行写操作……");
}
System.out.println(thread.getName() + ":写操作完毕!");
} finally {
System.out.println("释放写锁!");
lock.writeLock().unlock();
}
}
}
运行结果:
结论:读写锁的实现必须确保写操作对读操作的内存影响。换句话说,一个获得了读锁的线程必须能看到前一个释放的写锁所更新的内容,读写锁之间为互斥。
3.2 ReetrantReadWriteLock写锁关系
package test;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
*
* ReetrantReadWriteLock实现
* @author itbird
*
*/
public class ReadAndWriteLockTest {
public static ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
public static void main(String[] args) {
//同时写
ExecutorService service = Executors.newCachedThreadPool();
service.execute(new Runnable() {
@Override
public void run() {
writeFile(Thread.currentThread());
}
});
service.execute(new Runnable() {
@Override
public void run() {
writeFile(Thread.currentThread());
}
});
}
// 读操作
public static void readFile(Thread thread) {
lock.readLock().lock();
boolean readLock = lock.isWriteLocked();
if (!readLock) {
System.out.println("当前为读锁!");
}
try {
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(20);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(thread.getName() + ":正在进行读操作……");
}
System.out.println(thread.getName() + ":读操作完毕!");
} finally {
System.out.println("释放读锁!");
lock.readLock().unlock();
}
}
// 写操作
public static void writeFile(Thread thread) {
lock.writeLock().lock();
boolean writeLock = lock.isWriteLocked();
if (writeLock) {
System.out.println("当前为写锁!");
}
try {
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(20);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(thread.getName() + ":正在进行写操作……");
}
System.out.println(thread.getName() + ":写操作完毕!");
} finally {
System.out.println("释放写锁!");
lock.writeLock().unlock();
}
}
}
运行结果:
4. 总结
1.Java并发库中ReetrantReadWriteLock实现了ReadWriteLock接口并添加了可重入的特性
2.ReetrantReadWriteLock读写锁的效率明显高于synchronized关键字
3.ReetrantReadWriteLock读写锁的实现中,读锁使用共享模式;写锁使用独占模式,换句话说,读锁可以在没有写锁的时候被多个线程同时持有,写锁是独占的
4.ReetrantReadWriteLock读写锁的实现中,需要注意的,当有读锁时,写锁就不能获得;而当有写锁时,除了获得写锁的这个线程可以获得读锁外,其他线程不能获得读锁