《趣学算法-动态规划-0-1背包问题》阅读笔记

简介: 《趣学算法-动态规划-0-1背包问题》阅读笔记

14天阅读挑战赛

算法知识点

动态规划是一种多阶段决策最优解模型,一般用来求最值问题,多数情况下它可以采用自下而上的递推方式来得出每个子问题的最优解(即最优子结构),进而自然而然地得出依赖子问题的原问题的最优解。
三个特性:

  • 多阶段决策,意味着问题可以分解成子问题,子子问题,。。。,也就是说问题可以拆分成多个子问题进行求解
  • 最优子结构,在自下而上的递推过程中,我们求得的每个子问题一定是全局最优解,既然它分解的子问题是全局最优解,那么依赖于它们解的原问题自然也是全局最优解。
  • 自下而上,怎样才能自下而上的求出每个子问题的最优解呢,可以肯定子问题之间是有一定联系的,即迭代递推公式,也叫「状态转移方程」,要定义好这个状态转移方程, 我们就需要定义好每个子问题的状态(DP 状态),那为啥要自下而上地求解呢,因为如果采用像递归这样自顶向下的求解方式,子问题之间可能存在大量的重叠,大量地重叠子问题意味着大量地重复计算,这样时间复杂度很可能呈指数级上升(在下文中我们会看到多个这样重复的计算导致的指数级的时间复杂度),所以自下而上的求解方式可以消除重叠子问题。

简单总结一下,最优子结构,状态转移方程,重叠子问题就是动态规划的三要素,这其中定义子问题的状态与写出状态转移方程是解决动态规划最为关键的步骤,状态转移方程如果定义好了,解决动态规划就基本不是问题了。

算法题目描述

有 N 件物品和一个容量是 V 的背包。每件物品有且只有一件。

第 i 件物品的体积是v[i] ,价值是w[i] 。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

示例 1:

输入: N = 3, V = 4, v = [4,2,3], w = [4,2,3]
输出: 4
解释: 只选第一件物品,可使价值最大。

示例 2:

输入: N = 3, V = 5, v = [4,2,3], w = [4,2,3]
输出: 5
解释: 不选第一件物品,选择第二件和第三件物品,可使价值最大。

解题思路

在这里插入图片描述

模板代码

    /**
     *
     * @param N 物品数
     * @param C 背包容量
     * @param v 每件的体积
     * @param w 每件物品的价值
     * @return 最大价值
     */
    public int zoKnapsack(int N, int C, int[] v, int[] w) {
        //0-1背包朴素
        int[][] dp = new int[N][C+1];
        //初始化
        for (int j = 0; j <= C; j++) {
            dp[0][j] = j >= v[0] ? w[0] : 0;
        }

        //处理剩余元素
        for (int i = 1; i < N; i++) {
            for (int j = 0; j <= C; j++) {
                //不选
                int x = dp[i-1][j];
                //选
                int y = j >= v[i] ? dp[i-1][j-v[i]] + w[i] : 0;
                //取两者中的最大值
                dp[i][j] = Math.max(x, y);
            }
        }
        return dp[N-1][C];
    }
目录
相关文章
|
18天前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
231 1
|
9天前
|
传感器 资源调度 算法
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
本文提出一种多子带相干累积(MSCA)算法,通过引入空带和子带相干处理,解决DDMA-MIMO雷达的多普勒模糊与能量分散问题。该方法在低信噪比下显著提升检测性能,实测验证可有效恢复目标速度,适用于车载雷达高精度感知。
66 4
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
|
18天前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
145 1
贪心算法:部分背包问题深度解析
|
8月前
|
存储 算法 Java
算法系列之动态规划
动态规划(Dynamic Programming,简称DP)是一种用于解决复杂问题的算法设计技术。它通过将问题分解为更小的子问题,并存储这些子问题的解来避免重复计算,从而提高算法的效率。
268 4
算法系列之动态规划
|
9月前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
221 5
|
8月前
|
算法 安全 调度
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
|
8月前
|
机器学习/深度学习 算法 测试技术
【动态规划篇】01 背包的逆袭:如何用算法装满你的 “财富背包”
【动态规划篇】01 背包的逆袭:如何用算法装满你的 “财富背包”
|
11月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
205 2
|
12月前
|
机器学习/深度学习 安全 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23(下)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23(下)
157 0
|
10天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)

热门文章

最新文章