实践教程之如何将PolarDB-X与大数据等系统互通

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
简介: PolarDB-X 为了方便用户体验,提供了免费的实验环境,您可以在实验环境里体验 PolarDB-X 的安装部署和各种内核特性。除了免费的实验,PolarDB-X 也提供免费的视频课程,手把手教你玩转 PolarDB-X 分布式数据库。

本期实验将指导您使用PolarDB-X+Canal+ClickHouse搭建实时分析系统。

本期免费实验地址

本期教学视频地址

前置准备

假设已经根据前一讲内容完成了PolarDB-X的搭建部署,可以成功链接上PolarDB-X数据库。

实践教程之如何快速安装部署PolarDB-X

部署Canal

Canal是一款流行的MySQL Binlog增量订阅工具,详情请参见Canal说明文档。Canal提供了Docker镜像,详情请参见Canal Docker镜像文档。

(1) 执行如下命令,下载脚本。

wget https://raw.githubusercontent.com/alibaba/canal/master/docker/run.sh

(2) 执行如下命令,构建一个destination name为test的队列。

注意 :您需要将none_loopback_host_ip修改为云产品资源列表中的ECS的弹性IP,请勿使用localhost或127.0.0.1。

sh run.sh -e canal.auto.scan=false \
 -e canal.destinations=test \
 -e canal.instance.master.address=none_loopback_host_ip:8527 \
 -e canal.instance.dbUsername=polardbx_root \
 -e canal.instance.dbPassword=123456 \
 -e canal.instance.connectionCharset=UTF-8 \
 -e canal.instance.tsdb.enable=true \
 -e canal.instance.gtidon=false

部署ClickHouse

ClickHouse是一款分析系统,详情请参见ClickHouse官方文档。ClickHouse提供了Docker镜像,详情请参见ClickHouseDocker镜像文档。

执行如下命令,部署ClickHouse。

docker run -d --name some-clickhouse-server --ulimit nofile=262144:262144 -p 8123:8123 yandex/clickhouse-server

在PolarDB-X和ClickHouse中创建测试库和表

(1) 执行如下命令,登录PolarDB-X数据库。

mysql -h127.0.0.1 -P8527 -upolardbx_root -p123456

(2) 执行如下SQL语句,创建数据库testdb。

CREATE DATABASE testdb;

(3) 执行如下SQL语句,使用数据库testdb。

USE testdb;

(4) 执行如下SQL语句,创建test表。

CREATE TABLE test( id INT(11) AUTO_INCREMENT PRIMARY KEY, name CHAR(20) not null );

(5) 输入exit退出数据库。

(6) 执行如下命令,登录ClickHouse数据库。

docker run -it --rm --link some-clickhouse-server:clickhouse-server yandex/clickhouse-client --host clickhouse-server

(7) 执行如下SQL语句,创建数据库testdb。

CREATE DATABASE testdb;

(8) 执行如下SQL语句,使用数据库testdb。

USE testdb;

(9) 执行如下SQL语句,创建test表。

Create Table test(id INT(32),name CHAR(20)) Engine = MergeTree() Order By id;

(10) 输入exit退出数据库。

运行Canal Client消费并投递增量变更

经过以上步骤,您已经准备好了PolarDB-X、Canal Server和ClickHouse三个容器,并且在源端(PolarDB-X)和目标端(ClickHouse)建好了测试用的数据库和表。接下来我们通过Canal Client消费Canal Server获取的增量数据,并将源端DML中的Insert事件投递到ClickHouse中。

(1) 执行如下命令,使用yum安装JDK 1.8。

yum -y install java-1.8.0-openjdk*

(2) 执行如下命令,下载polardb-x-to-clickhouse-canal-client.jar投递代码文件。

wget https://labfileapp.oss-cn-hangzhou.aliyuncs.com/polardb-x-to-clickhouse-canal-client.jar

(3) 执行如下命令,运行polardb-x-to-clickhouse-canal-client.jar代码文件。

java -jar polardb-x-to-clickhouse-canal-client.jar

注意:请勿中断投递代码文件,否则会造成投递失败。

(4) 投递链路已成功打通,接下来您可以在源端(PolarDB-X)执行INSERT语句,并观察目标端(ClickHouse)中的数据变化。
在实验页面,单击右上角的
20221226110243.jpg
图标,创建新的终端窗口。
a8.png

(5) 在新的终端窗口中,执行如下命令,登录PolarDB-X数据库。

mysql -h127.0.0.1 -P8527 -upolardbx_root -p123456

(6) 执行如下SQL语句,使用数据库testdb。

USE testdb;

(7) 执行如下SQL语句,插入一条数据。

INSERT INTO test(name) values("polardb-x"), ("is"), ("awsome");

(8) 输入exit退出数据库。

(9) 执行如下命令,登录ClickHouse数据库。

docker run -it --rm --link some-clickhouse-server:clickhouse-server yandex/clickhouse-client --host clickhouse-server

(10) 执行如下SQL语句,使用数据库testdb。

USE testdb;

(11) 执行如下SQL语句,查询test表

SELECT * FROM test;

返回结果如下,您可以看到目标端(ClickHouse)接收到投递过来的数据。
20221226110459.jpg

了解更多

PolarDB-X 分布式事务实现原理(一)
PolarDB-X 全局 Binlog 解读
PolarDB-X 全局 Binlog 解读之 DDL

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
2月前
|
存储 SQL 安全
应用案例|开源 PolarDB-X 在互联网安全场景的应用实践
中盾集团采用PolarDB-X云原生分布式数据库开源版本,有效解决了大数据量处理、复杂查询以及历史数据维护等难题,实现了业务的高效扩展与优化。
|
3月前
|
数据采集 存储 数据处理
数据平台问题之知识管理系统的效果如何评估
数据平台问题之知识管理系统的效果如何评估
|
3月前
|
分布式计算 DataWorks 关系型数据库
MaxCompute 生态系统中的数据集成工具
【8月更文第31天】在大数据时代,数据集成对于构建高效的数据处理流水线至关重要。阿里云的 MaxCompute 是一个用于处理大规模数据集的服务平台,它提供了强大的计算能力和丰富的生态系统工具来帮助用户管理和处理数据。本文将详细介绍如何使用 DataWorks 这样的工具将 MaxCompute 整合到整个数据处理流程中,以便更有效地管理数据生命周期。
125 0
|
3月前
|
存储 Cloud Native 关系型数据库
PolarDB 高可用架构设计与实践
【8月更文第27天】 在现代互联网应用中,数据库作为核心的数据存储层,其稳定性和可靠性尤为重要。阿里云的 PolarDB 作为一款云原生的关系型数据库服务,提供了高可用、高性能和自动化的特性,适用于各种规模的应用。本文将详细介绍 PolarDB 的高可用架构设计,并探讨其实现数据安全性和业务连续性的关键技术。
99 0
|
24天前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第21天】本文探讨了MongoDB Atlas的核心特性、实践应用及对云原生数据库未来的思考。MongoDB Atlas作为MongoDB的云原生版本,提供全球分布式、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了云原生数据库的未来趋势,如架构灵活性、智能化运维和混合云支持,并分享了实施MongoDB Atlas的最佳实践。
|
25天前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第20天】本文探讨了MongoDB Atlas的核心特性、实践应用及对未来云原生数据库的思考。MongoDB Atlas作为云原生数据库服务,具备全球分布、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了实施MongoDB Atlas的最佳实践和职业心得,展望了云原生数据库的发展趋势。
|
3月前
|
存储 SQL 分布式计算
Hadoop生态系统概述:构建大数据处理与分析的基石
【8月更文挑战第25天】Hadoop生态系统为大数据处理和分析提供了强大的基础设施和工具集。通过不断扩展和优化其组件和功能,Hadoop将继续在大数据时代发挥重要作用。
|
3月前
|
分布式计算 搜索推荐 物联网
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
|
3月前
|
人工智能 分布式计算 架构师
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
|
3月前
|
存储 监控 安全
大数据架构设计原则:构建高效、可扩展与安全的数据生态系统
【8月更文挑战第23天】大数据架构设计是一个复杂而系统的工程,需要综合考虑业务需求、技术选型、安全合规等多个方面。遵循上述设计原则,可以帮助企业构建出既高效又安全的大数据生态系统,为业务创新和决策支持提供强有力的支撑。随着技术的不断发展和业务需求的不断变化,持续优化和调整大数据架构也将成为一项持续的工作。

热门文章

最新文章

相关产品

  • 云原生数据库 PolarDB
  • 下一篇
    无影云桌面