【Flutter】大型项目里Flutter测试应用实例以及集成测试的深度使用

简介: 【Flutter】大型项目里Flutter测试应用实例以及集成测试的深度使用

测试应用实例_Flutter

    await tester.pumpWidget(
      new StatefulBuilder(
        builder: (BuildContext context, StateSetter setState) {
          return new MaterialApp(
            home: new Material(
              child: new Center(
                child: new Slider(
                  key: sliderKey,
                  value: value,
                  onChanged: (double newValue) {
                    setState(() {
                      value = newValue;
                    });
                  },
                ),
              ),
            ),
          );
        },
      )

应用的功能越多,手动测试就越困难。一整套自动化测试将帮助确保应用程序在发布前正确执行,同时保持功能和错误修复速度。
有很多种自动化测试。总结如下:
单元测试:测试单个函数、方法或类。例如,被测试单元的外部依赖性通常是模拟的,例如package:mockito。单元测试通常不会读取/写入磁盘、呈现到屏幕或从运行测试的进程外部接收用户操作。单元测试的目标是验证逻辑单元在各种条件下的正确性。

 await tester.tap(find.byKey(sliderKey));
    expect(value, equals(0.5));

小部件测试:(在其他UI框架中称为组件测试)用于测试的单个小部件。测试小部件涉及多个类,需要为测试环境提供适当的小部件生命周期上下文。例如,它应该能够接收和响应用户操作和事件,执行布局,并实例化子部件。因此,Widget测试比单元测试更全面。然而,就像单元测试一样,小部件测试环境被一个比完整UI系统简单得多的实现所取代。小部件测试的目标是验证小部件的UI外观和交互是否符合预期。

 testWidgets('my first widget test', (WidgetTester tester) async {
    var sliderKey = new UniqueKey();
    var value = 0.0;

集成测试:测试整个应用程序或应用程序的大部分。通常,集成测试可以在真实设备或操作系统模拟器(如iOS模拟器或Android模拟器)上运行。测试中的应用程序通常与测试驱动程序代码隔离,以避免结果偏差。集成测试的目标是验证应用程序作为一个整体是否正确运行,以及它所包含的所有小部件是否按预期相互集成。还可以使用集成测试来验证应用程序的性能。

import 'package:test/test.dart';

void main() {
  test('my first unit test', () {
    var answer = 42;
    expect(answer, 42);
  });
}

一些Flutter库(如dart:ui)在独立dart VM附带的dart SDK中不可用。此颤振测试命令允许在本地Dart VM中运行测试,并使用颤振引擎而无需首页(UI将不会显示)。使用此命令,可以运行任何测试,无论它是否取决于Flutter库。
使用package:test编写Flutter单元测试。用于编写单元测试的package:test文档在这里。

dev_dependencies:
  flutter_test:
    sdk: flutter

即使的测试本身没有显式导入到flatter_test中,因为测试框架本身在后台使用它。
要运行测试,请从项目目录(而不是测试子目录)运行fluttertesttest/unit _ test.dart
要运行所有测试,请从项目目录运行颤振测试。

集成测试

Flutter的是:命令行
A包:flatter_ driver(API)
两者都允许:为集成测试创建指导应用程序,编写测试,运行测试

import 'package:flutter_driver/driver_extension.dart';

void main() {
  // 启用扩展
  enableFlutterDriverExtension();
}

集成测试是一个简单的包:测试测试。它使用Flutter驱动程序API告诉应用程序要执行什么操作,然后验证应用程序是否执行了此操作。
出于兴趣,我们还让测试记录性能时间线。我们创建了一个user_ list_ scrolling_ test.dart测试文件位于my_ app/test_ Driver/down中:

void main() {
  group('scrolling performance test', () {
    FlutterDriver driver;

    setUpAll(() async {
      // 连接app
      driver = await FlutterDriver.connect();
    });

    tearDownAll(() async {
      if (driver != null) {
        // 关闭连接
        driver.close();
      }
    });

构建--目标应用程序并将其安装在设备上
启动应用程序
在driver/_ list_ scrolling_ test.dart下运行my_ app/test_ User
可能想知道该命令如何找到正确的测试文件。flutter drive命令使用约定在与--target应用程序相同的目录中查找具有相同文件名的文件,但带有带有测试后缀的_Test文件。

弹性框本身(行和列)的行为是不同的,这取决于它们在给定方向上是有边界的还是无边界的。
在边界限制下,它们将尽可能大。
它们试图使其子节点在没有边界限制的情况下适应此方向。在这种情况下,不能将子节点的flex属性设置为0以外的任何值(默认值为0)。在小部件库中,这意味着当弹性框位于另一个弹性框或可滚动框内时,不能使用Expanded。如果执行此操作,将收到异常消息。
在交叉方向上,例如Column的宽度和Row的高度,它们不能是无边界的,否则它们将无法合理地对齐子节点。

 for (int i = 0; i < 5; i++) {
          await driver.scroll(
              userList, 0.0, -300.0, new Duration(milliseconds: 300));
          await new Future<Null>.delayed(new Duration(milliseconds: 500));

这些约束有时是“紧”的,这意味着它们不会为渲染框留出空间来确定其自身的大小(例如,如果最小宽度和最大宽度相同,即宽度很窄)。主要示例是App小部件,它是RenderView类中包含的一个小部件。

   for (int i = 0; i < 5; i++) {
          await driver.scroll(
              userList, 0.0, 300.0, new Duration(milliseconds: 300));
          await new Future<Null>.delayed(new Duration(milliseconds: 500));
        }

应用程序构建函数返回的子小部件的渲染框被分配了一个约束,迫使它精确地填充应用程序的内容区域(通常是整个屏幕)。Flutter中的许多框,特别是那些只包含一个子控件的框,会将其约束传递给其子控件。这意味着,如果在应用程序渲染树的根处嵌套一些框,则所有子节点都受这些渲染框的约束。

      summary.writeSummaryToFile('stocks_scroll_perf', pretty: true);
      summary.writeTimelineToFile('stocks_scroll_perf', pretty: true);
相关文章
|
18天前
|
Java 测试技术 数据安全/隐私保护
软件测试中的自动化策略与工具应用
在软件开发的快速迭代中,自动化测试以其高效、稳定的特点成为了质量保证的重要手段。本文将深入探讨自动化测试的核心概念、常见工具的应用,以及如何设计有效的自动化测试策略,旨在为读者提供一套完整的自动化测试解决方案,帮助团队提升测试效率和软件质量。
|
23天前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
43 3
|
4天前
|
机器学习/深度学习 人工智能 jenkins
探索软件测试中的自动化与持续集成
【10月更文挑战第21天】 在软件开发的生命周期中,软件测试扮演着至关重要的角色。随着技术的进步和开发模式的转变,自动化测试和持续集成已经成为提高软件质量和效率的关键手段。本文将深入探讨自动化测试和持续集成的概念、实施策略以及它们如何相互配合以优化软件开发流程。我们将通过分析实际案例,展示这些技术如何在实际项目中发挥作用,以及面临的挑战和解决方案。此外,文章还将讨论未来趋势,包括人工智能在测试领域的应用前景。
38 17
|
17天前
|
jenkins 测试技术 持续交付
软件测试中的自动化与持续集成
在现代软件开发过程中,自动化测试和持续集成已成为不可或缺的组成部分。本文将深入探讨自动化测试和持续集成的重要性、优势以及如何有效实施它们以提升软件质量和开发效率。通过具体案例分析,我们将展示这些技术如何在实际项目中发挥作用,并讨论其面临的挑战及应对策略。
40 3
|
23天前
|
机器学习/深度学习 人工智能 测试技术
探索自动化测试框架在软件开发中的应用与挑战##
本文将深入探讨自动化测试框架在现代软件开发过程中的应用,分析其优势与面临的挑战。通过具体案例分析,揭示如何有效整合自动化测试以提升软件质量和开发效率。 ##
|
20天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
49 1
|
22天前
|
监控 jenkins 测试技术
探索软件测试中的自动化与持续集成####
本文旨在探讨软件测试中自动化测试与持续集成(CI)的融合实践,分析其对提升软件开发效率和质量的重要性。通过深入剖析自动化测试的优势、持续集成的核心概念以及两者结合的最佳实践案例,揭示这一技术趋势如何重塑现代软件开发流程。文章还将讨论实施过程中的挑战和应对策略,为读者提供一套实用的方法论指导。 ####
|
22天前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
34 1
|
26天前
|
监控 JavaScript 前端开发
如何在实际应用中测试和比较React和Vue的性能?
总之,通过多种方法的综合运用,可以相对客观地比较 React 和 Vue 在实际应用中的性能表现,为项目的选择和优化提供有力的依据。
33 1