物流项目中SparkSQL的相关调优

简介: 编写完成从Kafka消费数据,打印控制台上,其中创建SparkSession实例对象时,需要设置参数值。

实时ETL开发之流计算程序【编程】


编写完成从Kafka消费数据,打印控制台上,其中创建SparkSession实例对象时,需要设置参数值。


package cn.itcast.logistics.etl.realtime
import cn.itcast.logistics.common.Configuration
import org.apache.commons.lang3.SystemUtils
import org.apache.spark.SparkConf
import org.apache.spark.sql.streaming.OutputMode
import org.apache.spark.sql.{DataFrame, SparkSession}
/**
 * 编写StructuredStreaming程序,实时从Kafka消息数据(物流相关数据和CRM相关数据),打印控制台Console
   * 1. 初始化设置Spark Application配置
   * 2. 判断Spark Application运行模式进行设置
   * 3. 构建SparkSession实例对象
   * 4. 初始化消费物流Topic数据参数
   * 5. 消费物流Topic数据,打印控制台
   * 6. 初始化消费CRM Topic数据参数
   * 7. 消费CRM Topic数据,打印控制台
   * 8. 启动流式应用,等待终止
 */
object LogisticsEtlApp {
  def main(args: Array[String]): Unit = {
    // step1. 构建SparkSession实例对象,设置相关属性参数值
    // 1. 初始化设置Spark Application配置
    val sparkConf = new SparkConf()
        .setAppName(this.getClass.getSimpleName.stripSuffix("$"))
      .set("spark.sql.session.timeZone", "Asia/Shanghai")
      .set("spark.sql.files.maxPartitionBytes", "134217728")
      .set("spark.sql.files.openCostInBytes", "134217728")
      .set("spark.sql.shuffle.partitions", "3")
      .set("spark.sql.autoBroadcastJoinThreshold", "67108864")
    // 2. 判断Spark Application运行模式进行设置
    if (SystemUtils.IS_OS_WINDOWS || SystemUtils.IS_OS_MAC) {
      //本地环境LOCAL_HADOOP_HOME
      System.setProperty("hadoop.home.dir", Configuration.LOCAL_HADOOP_HOME)
      //设置运行环境和checkpoint路径
      sparkConf
        .set("spark.master", "local[3]")
        .set("spark.sql.streaming.checkpointLocation", Configuration.SPARK_APP_WIN_CHECKPOINT_DIR)
    } else {
      //生产环境
      sparkConf
        .set("spark.master", "yarn")
        .set("spark.sql.streaming.checkpointLocation", Configuration.SPARK_APP_DFS_CHECKPOINT_DIR)
    }
    // 3. 构建SparkSession实例对象
    val spark: SparkSession = SparkSession.builder()
        .config(sparkConf)
      .getOrCreate()
    import spark.implicits._
    // step2. 从Kafka实时消费数据,设置Kafka Server地址和Topic名称
    // step3. 将ETL转换后数据打印到控制台,启动流式应用
    // 4. 初始化消费物流Topic数据参数
    val logisticsDF: DataFrame = spark.readStream
      .format("kafka")
      .option("kafka.bootstrap.servers", "node2.itcast.cn:9092")
      .option("subscribe", "logistics")
      .option("maxOffsetsPerTrigger", "100000")
      .load()
    // 5. 消费物流Topic数据,打印控制台
    logisticsDF.writeStream
      .queryName("query-logistics-console")
      .outputMode(OutputMode.Append())
      .format("console")
      .option("numRows", "10")
      .option("truncate", "false")
      .start()
    // 6. 初始化消费CRM Topic数据参数
    val crmDF: DataFrame = spark.readStream
      .format("kafka")
      .option("kafka.bootstrap.servers", "node2.itcast.cn:9092")
      .option("subscribe", "crm")
      .option("maxOffsetsPerTrigger", "100000")
      .load()
    // 7. 消费CRM Topic数据,打印控制
    crmDF.writeStream
      .queryName("query-crm-console")
      .outputMode(OutputMode.Append())
      .format("console")
      .option("numRows", "10")
      .option("truncate", "false")
      .start()
    // step4. 流式应用启动以后,等待终止,关闭资源
    // 8. 启动流式应用,等待终止
    spark.streams.active.foreach(query => println("启动Query:" + query.name))
    spark.streams.awaitAnyTermination()
  }
}


SparkSQL 参数调优设置:


  • 1)、设置会话时区:set("spark.sql.session.timeZone", "Asia/Shanghai")


  • 2)、设置读取文件时单个分区可容纳的最大字节数


set("spark.sql.files.maxPartitionBytes", "134217728")


  • 3)、设置合并小文件的阈值:set("spark.sql.files.openCostInBytes", "134217728")


  • 4)、设置 shuffle 分区数:set("spark.sql.shuffle.partitions", "4")


  • 5)、设置执行 join 操作时能够广播给所有 worker 节点的最大字节大小


set("spark.sql.autoBroadcastJoinThreshold", "67108864")

目录
相关文章
|
Java 数据库
【数据库】starrocks 安装踩坑
【数据库】starrocks 安装踩坑
1104 0
|
移动开发 小程序
知识付费小程序注册时类目该如何选择?
知识付费小程序注册时类目该如何选择?
940 0
|
分布式计算 调度 Spark
|
SQL JSON Java
两年了,ambari终于发布了2.7.6新版本
2021/11/16,ambari终于推出了2.7.6版本,该版本相对2.7.5版本以来,共有26个contributors提交了114个commits以及修改了557个文件。
|
SQL 分布式计算 测试技术
扩展Spark Catalyst,打造自定义的Spark SQL引擎
在Spark2.2版本中,引入了新的扩展点,使得用户可以在Spark session中自定义自己的parser,analyzer,optimizer以及physical planning stragegy rule。
4634 0
|
存储 机器学习/深度学习 分布式计算
HDFS数据安全与隐私保护
HDFS数据安全与隐私保护
|
机器学习/深度学习 并行计算 Java
【java】 vector api 快速入门
【java】 vector api 快速入门
1382 0
|
SQL 存储 Java
Hive 拉链表详解及实例
拉链表是一种数据仓库技术,用于处理持续增长且存在时间范围内的重复数据,以节省空间。它在Hive中通过列式存储ORC实现,适用于大规模数据场景,尤其当数据在有限时间内有多种状态变化。配置涉及事务管理和表合并选项。示例中展示了如何从原始订单表创建拉链表,通过聚合操作和动态分区减少数据冗余。增量数据可通过追加到原始表然后更新拉链表来处理。提供的Java代码用于生成模拟的订单增量数据,以演示拉链表的工作流程。
738 3
|
人工智能 Ubuntu Docker
【多系统解决方案】赶紧丢掉虚拟机吧,Docker + VNC 让你更加轻松拥有多系统
【多系统解决方案】赶紧丢掉虚拟机吧,Docker + VNC 让你更加轻松拥有多系统
693 0
|
SQL 消息中间件 监控
​实战:Flink 1.12 维表 Join Hive 最新分区功能体验
我们生产常有将实时数据流与 Hive 维表 join 来丰富数据的需求,其中 Hive 表是分区表,业务上需要关联上 Hive 最新分区的数据。上周 Flink 1.12 发布了,刚好支撑了这种业务场景,我也将 1.12 版本部署后做了一个线上需求并上线。对比之前生产环境中实现方案,最新分区直接作为时态表提升了很多开发效率,在这里做一些小的分享。
​实战:Flink 1.12 维表 Join Hive 最新分区功能体验