阿里云-DataWorks- ODPS SQL开发4-SQL性能优化

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
大数据开发治理平台DataWorks,资源组抵扣包 750CU*H
简介: 阿里云-DataWorks- ODPS SQL开发4-SQL性能优化

前言

前几篇我们讲解了ODPS数据开发过程中会大量用到的各种日期与字符、数学运算、聚合、开窗、自定义等函数,
今天我们针对海量数据开发过程数据开发效率优化做讲解。

常见数据优化问题

数据倾斜问题
1、大表关联小表
大表关联小表出现倾斜时,可以使用mapjoin的hint(/+mapjoin(b)/)。
同时可适当调整mapjoin中小表的内存大小:
set odps.sql.mapjoin.memory.max=512;默认512,单位M,[128,2048]之间调整。

2、大表关联大表

  • 大表中存在热点key:可以考虑对大表进行拆分,根据join的key,把热点的数据拆出来走mapjoin,其余的考虑普通join即可。当然也有skewjoin的hint可以参考使用。
  • 大表中不存在热点key:可以考虑在分区的基础上加上桶,对关联字段进行分桶,减少shuffle的数据量。

    3、count distinct

常见的数据倾斜还有一种情况是因为使用了count distinct,这种情况可以考虑使用group by先进行数据去重,再count。

常用的参数设置

常用的调整无外乎调整map、join、reduce的个数,map、join、reduce的内存大小。
本文以ODPS的参数设置为例,参数可能因版本不同而略有差异。
1、Map设置
set odps.sql.mapper.cpu=100
作用:设置处理Map Task每个Instance的CPU数目,默认为100,在[50,800]之间调整。
场景:某些任务如果特别耗计算资源的话,可以适当调整Cpu数目。对于大多数Sql任务来说,一般不需要调整Cpu个数的。

set odps.sql.mapper.memory=1024
作用:设定Map Task每个Instance的Memory大小,单位M,默认1024M,在[256,12288]之间调整。
场景:当Map阶段的Instance有Writer Dumps时,可以适当的增加内存大小,减少Dumps所花的时间。

set odps.sql.mapper.merge.limit.size=64
作用:设定控制文件被合并的最大阈值,单位M,默认64M,在[0,Integer.MAX_VALUE]之间调整。
场景:当Map端每个Instance读入的数据量不均匀时,可以通过设置这个变量值进行小文件的合并,使得每个Instance的读入文件均匀。一般会和odps.sql.mapper.split.size这个参数结合使用。

set odps.sql.mapper.split.size=256
作用:设定一个Map的最大数据输入量,可以通过设置这个变量达到对Map端输入的控制,单位M,默认256M,在[1,Integer.MAX_VALUE]之间调整。
场景:当每个Map Instance处理的数据量比较大,时间比较长,并且没有发生长尾时,可以适当调小这个参数。如果有发生长尾,则结合odps.sql.mapper.merge.limit.size这个参数设置每个Map的输入数量。

2、Join设置
set odps.sql.joiner.instances=-1

作用: 设定Join Task的Instance数量,默认为-1,在[0,2000]之间调整。不走HBO优化时,ODPS能够自动设定的最大值为1111,手动设定的最大值为2000,走HBO时可以超过2000。
场景:每个Join Instance处理的数据量比较大,耗时较长,没有发生长尾,可以考虑增大使用这个参数。

set odps.sql.joiner.cpu=100

作用: 设定Join Task每个Instance的CPU数目,默认为100,在[50,800]之间调整。
场景:某些任务如果特别耗计算资源的话,可以适当调整CPU数目。对于大多数SQL任务来说,一般不需要调整CPU。

set odps.sql.joiner.memory=1024

作用:设定Join Task每个Instance的Memory大小,单位为M,默认为1024M,在[256,12288]之间调整。
场景:当Join阶段的Instance有Writer Dumps时,可以适当的增加内存大小,减少Dumps所花的时间。

作业跑完后,可以在 summary 中搜索 writer dumps 字样来判断是否产生 Writer Dumps。

4、Reduce设置
set odps.sql.reducer.instances=-1

作用: 设定Reduce Task的Instance数量,手动设置区间在[1,99999]之间调整。不走HBO优化时,ODPS能够自动设定的最大值为1111,手动设定的最大值为99999,走HBO优化时可以超过99999。
场景:每个Join Instance处理的数据量比较大,耗时较长,没有发生长尾,可以考虑增大使用这个参数。

set odps.sql.reducer.cpu=100

作用:设定处理Reduce Task每个Instance的Cpu数目,默认为100,在[50,800]之间调整。
场景:某些任务如果特别耗计算资源的话,可以适当调整Cpu数目。对于大多数Sql任务来说,一般不需要调整Cpu。

set odps.sql.reducer.memory=1024

作用:设定Reduce Task每个Instance的Memory大小,单位M,默认1024M,在[256,12288]之间调整。
场景:当Reduce阶段的Instance有Writer Dumps时,可以适当的增加内存的大小,减少Dumps所花的时间。

上面这些参数虽然好用,但是也过于简单暴力,可能会对集群产生一定的压力。特别是在集群整体资源紧张的情况下,增加资源的方法可能得不到应有的效果,随着资源的增大,等待资源的时间变长的风险也随之增加,导致效果不好!因此我们要合理的使用资源参数!

小文件合并参数

set odps.merge.cross.paths=true|false
作用:设置是否跨路径合并,对于表下面有多个分区的情况,合并过程会将多个分区生成独立的Merge Action进行合并,所以对于odps.merge.cross.paths设置为true,并不会改变路径个数,只是分别去合并每个路径下的小文件。

set odps.merge.smallfile.filesize.threshold = 64
作用:设置合并文件的小文件大小阀值,文件大小超过该阀值,则不进行合并,单位为M,可以不设,不设时,则使用全局变量odps_g_merge_filesize_threshold,该值默认为32M,设置时必须大于32M。

set odps.merge.maxmerged.filesize.threshold = 256
作用:设置合并输出文件量的大小,输出文件大于该阀值,则创建新的输出文件,单位为M,可以不设,不设时,则使用全局变odps_g_max_merged_filesize_threshold,该值默认为256M,设置时必须大于256M。

set odps.merge.max.filenumber.per.instance = 10000
作用:设置合并Fuxi Job的单个Instance允许合并的小文件个数,控制合并并行的Fuxi Instance数,可以不设,不设时,则使用全局变量odps_g_merge_files_per_instance,该值默认为100,在一个Merge任务中,需要的Fuxi Instance个数至少为该目录下面的总文件个数除以该限制。

set odps.merge.max.filenumber.per.job = 10000
作用:设置合并最大的小文件个数,小文件数量超过该限制,则超过限制部分的文件忽略,不进行合并,可以不设,不设时,则使用全局变量odps_g_max_merge_files,该值默认为10000。

UDF相关参数

set odps.sql.udf.jvm.memory=1024
作用: 设定UDF JVM Heap使用的最大内存,单位M,默认1024M,在[256,12288]之间调整。
场景:某些UDF在内存计算、排序的数据量比较大时,会报内存溢出错误,这时候可以调大该参数,不过这个方法只能暂时缓解,还是需要从业务上去优化。

set odps.sql.udf.timeout=1800
作用:设置UDF超时时间,默认为1800秒,单位秒。[0,3600]之间调整。

set odps.sql.udf.python.memory=256
作用:设定UDF python 使用的最大内存,单位M,默认256M。[64,3072]之间调整。

set odps.sql.udf.optimize.reuse=true/false
作用:开启后,相同的UDF函数表达式,只计算一次,可以提高性能,默认为True。

set odps.sql.udf.strict.mode=false/true
作用:True为金融模式,False为淘宝模式,控制有些函数在遇到脏数据时是返回NULL还是抛异常,True是抛出异常,False是返回null。

其它

1、Mapjoin设置
set odps.sql.mapjoin.memory.max=512
作用:设置Mapjoin时小表的最大内存,默认512,单位M,[128,2048]之间调整。

2、动态分区设置
set odps.sql.reshuffle.dynamicpt=true/false
作用:默认true,用于避免拆分动态分区时产生过多小文件。如果生成的动态分区个数只会是很少几个,设为false避免数据倾斜。

3、数据倾斜设置
set odps.sql.groupby.skewindata=true/false
作用:开启Group By优化。

set odps.sql.skewjoin=true/false
作用:开启Join优化,必须设置odps.sql.skewinfo 才有效。

相关实践学习
基于Hologres轻量实时的高性能OLAP分析
本教程基于GitHub Archive公开数据集,通过DataWorks将GitHub中的项⽬、行为等20多种事件类型数据实时采集至Hologres进行分析,同时使用DataV内置模板,快速搭建实时可视化数据大屏,从开发者、项⽬、编程语⾔等多个维度了解GitHub实时数据变化情况。
相关文章
|
3月前
|
存储 分布式计算 DataWorks
从MaxCompute到Milvus:通过DataWorks进行数据同步,实现海量数据高效相似性检索
如果您需要将存储在MaxCompute中的大规模结构化数据导入Milvus,以支持高效的向量检索和相似性分析,可以通过DataWorks的数据集成服务实现无缝同步。本文介绍如何利用DataWorks,快速完成从MaxCompute到Milvus的离线数据同步。
|
8月前
|
数据采集 机器学习/深度学习 DataWorks
DataWorks产品评测:大数据开发治理的深度体验
DataWorks产品评测:大数据开发治理的深度体验
366 1
|
9月前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
9月前
|
SQL DataWorks 数据可视化
阿里云DataWorks评测:大数据开发治理平台的卓越表现
阿里云DataWorks是一款集数据集成、开发、分析与管理于一体的大数据平台,支持多种数据源无缝整合,提供可视化ETL工具和灵活的任务调度机制。其内置的安全体系和丰富的插件生态,确保了数据处理的高效性和安全性。通过实际测试,DataWorks展现了强大的计算能力和稳定性,适用于中小企业快速搭建稳定高效的BI系统。未来,DataWorks将继续优化功能,降低使用门槛,并推出更多灵活的定价方案,助力企业实现数据价值最大化。
|
9月前
|
分布式计算 DataWorks 搜索推荐
聊聊DataWorks这个大数据开发治理平台
聊聊DataWorks这个大数据开发治理平台
281 2
|
9月前
|
机器学习/深度学习 存储 数据采集
解锁DataWorks:一站式大数据治理神器
解锁DataWorks:一站式大数据治理神器
234 1
|
9月前
|
分布式计算 DataWorks 搜索推荐
DataWorks产品评测:大数据开发治理平台的最佳实践与体验
DataWorks是阿里云推出的一款大数据开发治理平台,集成了多种大数据引擎,支持数据集成、开发、分析和任务调度。本文通过用户画像分析的最佳实践,评测了DataWorks的功能和使用体验,并提出了优化建议。通过实践,DataWorks在数据整合、清洗及可视化方面表现出色,适合企业高效管理和分析数据。
345 0
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
434 13
解锁 SQL Server 2022的时间序列数据功能
【7月更文挑战第14天】要解锁SQL Server 2022的时间序列数据功能,可使用`generate_series`函数生成整数序列,例如:`SELECT value FROM generate_series(1, 10)。此外,`date_bucket`函数能按指定间隔(如周)对日期时间值分组,这些工具结合窗口函数和其他时间日期函数,能高效处理和分析时间序列数据。更多信息请参考官方文档和技术资料。
275 9

热门文章

最新文章