【LSTM预测】基于卷积神经网络结合双向长短时记忆CNN-BiLSTM(多输入单输出)数据预测含Matlab源码

简介: 【LSTM预测】基于卷积神经网络结合双向长短时记忆CNN-BiLSTM(多输入单输出)数据预测含Matlab源码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

及时准确的交通流信息对于智能交通系统的实现至关重要.针对现有预测方法不能充分利用交通流的时空特征,进而不能很好地提取交通流序列内在规律的问题,提出了一种结合卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)的深度学习预测模型(C-BiLSTM),在网络底层利用一维CNN来捕获观测点交通流数据的空间特征,然后输入到双向LSTM网络提取时间周期特征,最后由全连接层输出预测结果.使用美国交通研究数据实验室的实测交通数据进行验证,结果表明,所提出的C-BiLSTM组合模型具有更高的准确性,其性能相比双向LSTM网络预测模型提升了1.6%,相比单向LSTM网络预测模型提升了6.6%,是一种高精度的交通流预测模型.

⛄ 部分代码

%环境准备

%清理工作区间及命令窗口

clc;clear;

warning off;

%导入数据

data=xlsread('data');

%准备输入和输出训练数据

%BiLSTM数据评价

error_test=BiLSTMoutput_test'-output_test';

pererror_test=error_test./output_test';

error=error_test';

pererror=pererror_test';

avererror=sum(abs(error))/(ntest);

averpererror=sum(abs(pererror))/(ntest);

RMSE = sqrt(mean((error).^2));

disp('BiLSTM网络预测绝对平均误差MAE');

disp(avererror);

disp('BiLSTM网络预测平均绝对误差百分比MAPE');

disp(averpererror)

disp('BiLSTM网络预测均方根误差RMSE')

disp(RMSE)

% 数据可视化分析

%测试数据

figure()

plot(BiLSTMoutput_test,'r-.')    

hold on

plot(output_test,'k--')          

legend( '预测测试数据','实际分析数据','Location','NorthWest','FontName','仿宋');

title('BiLSTM网络模型结果及真实值','fontsize',15,'FontName','仿宋')

xlabel('样本','fontsize',10,'FontName','仿宋');

ylabel('数值','fontsize',10,'FontName','仿宋');

%-------------------------------------------------------------------------------------

figure()

stairs(pererror_test,'-.','Color',[255 50 0]./255,'linewidth',1)        

legend('BiLSTM网络测试相对误差','Location','NorthEast','FontName','仿宋')

title('BiLSTM网络预测相对误差','fontsize',10,'FontName','仿宋')

ylabel('误差','fontsize',10,'FontName','仿宋')

xlabel('样本','fontsize',10,'FontName','仿宋')

%-------------------------------------------------------------------------------------

⛄ 运行结果

⛄ 参考文献

[1]徐先峰, 黄刘洋, 龚美. 基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测[J]. 工业仪表与自动化装置, 2020.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



目录
打赏
0
0
1
0
875
分享
相关文章
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
基于DNN深度神经网络的OFDM+QPSK信号检测与误码率matlab仿真
本内容展示了基于深度神经网络(DNN)的OFDM-QPSK信号检测算法在Matlab2022a中的仿真效果。通过构建包含多层全连接层和ReLU激活函数的DNN模型,结合信号预处理与特征提取,实现了复杂通信环境下的高效信号检测。仿真结果对比了传统LS、MMSE方法与DNN方法在不同信噪比(SNR)条件下的误码率(BER)和符号错误率(SER),验证了DNN方法的优越性能。核心程序涵盖了QPSK调制、导频插入、OFDM发射、信道传输及DNN预测等关键步骤,为现代通信系统提供了可靠的技术支持。
34 0
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
191 17
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已经成为了我们生活中不可或缺的一部分。本文将介绍网络安全的基本概念,包括网络安全漏洞、加密技术以及如何提高个人和组织的安全意识。我们将通过一些实际案例来说明这些概念的重要性,并提供一些实用的建议来保护你的信息和数据。无论你是网络管理员还是普通用户,都可以从中获得有用的信息和技能。
120 0
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
148 10

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问