JAVA中生成随机数Random VS ThreadLocalRandom性能比较

简介: JAVA中生成随机数Random VS ThreadLocalRandom性能比较

前言


大家项目中如果有生成随机数的需求,我想大多都会选择使用Random来实现,它内部使用了CAS来实现。 实际上,JDK1.7之后,提供了另外一个生成随机数的类ThreadLocalRandom,那么他们二者之间的性能是怎么样的呢?


Random的使用


Random类是JDK提供的生成随机数的类, 这个类不是随机的,而是伪随机的。什么是伪随机呢? 伪随机是指生成的随机数是有一定规律的,这个规律出现的周期因伪随机算法的优劣而异。 一般来说,周期比较长,但可以预见。 我们可以通过以下代码简单地使用 Random:

1671204032016.jpg

Random中有很多方法。 这里我们就分析比较常见的nextInt()nextInt(int bound)方法。

  • nextInt()会计算int范围内的随机数,
  • nextInt(int bound)会计算[0,bound) 之间的随机数,左闭右开。


实现原理


Random类的构造函数如下图所示:

1671204040959.jpg

  • 可以看到在构造方法中,根据当前时间seed生成了一个AtomicLong类型的seed
public int nextInt() {
    return next(32);
}
  • 这里面直接调用了next()方法,传入了32,这里的32是指Int的位数。
protected int next(int bits) {
    long oldseed, nextseed;
    AtomicLong seed = this.seed;
    do {
        oldseed = seed.get();
        nextseed = (oldseed * multiplier + addend) & mask;
    } while (!seed.compareAndSet(oldseed, nextseed));
    return (int)(nextseed >>> (48 - bits));
}
  • 这里会根据seed的当前值,通过一定的规则(伪随机)计算出下一个seed,然后进行CAS。 如果CAS失败,继续循环上述操作。 最后根据我们需要的位数返回。

小结:可以看出在next(int bits)方法中,对AtomicLong进行了CAS操作,如果失败则循环重试。 很多人一看到CAS,因为不需要加锁,第一时间就想到了高性能、高并发。 但是在这里,却成为了我们多线程并发性能的瓶颈。 可以想象,当我们有多个线程执行CAS时,只有一个线程一定会失败,其他的会继续循环执行CAS操作。 当并发线程较多时,性能就会下降。


ThreadLocalRandom的使用


JDK1.7之后,提供了一个新类ThreadLocalRandom来替代Random

1671204054174.jpg


实现原理


我们先来看下current()方法。

public static ThreadLocalRandom current() {
    if (UNSAFE.getInt(Thread.currentThread(), PROBE) == 0)
        localInit();
    return instance;
}
static final void localInit() {
    int p = probeGenerator.addAndGet(PROBE_INCREMENT);
    int probe = (p == 0) ? 1 : p; // skip 0
    long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
    Thread t = Thread.currentThread();
    UNSAFE.putLong(t, SEED, seed);
    UNSAFE.putInt(t, PROBE, probe);
}
  • 如果没有初始化,先进行初始化,这里我们的seed不再是全局变量了。 我们的线程中有三个变量:
/** The current seed for a ThreadLocalRandom */
@sun.misc.Contended("tlr")
long threadLocalRandomSeed;
/** Probe hash value; nonzero if threadLocalRandomSeed initialized */
@sun.misc.Contended("tlr")
int threadLocalRandomProbe;
/** Secondary seed isolated from public ThreadLocalRandom sequence */
@sun.misc.Contended("tlr")
int threadLocalRandomSecondarySeed;
  • threadLocalRandomSeed:这是我们用来控制随机数的种子。
  • threadLocalRandomProbe:这个就是ThreadLocalRandom,用来控制初始化。
  • threadLocalRandomSecondarySeed:这是二级种子。

关键代码如下:

UNSAFE.putLong(t = Thread.currentThread(), SEED,r=UNSAFE.getLong(t, SEED) + GAMMA);

可以看出,由于每个线程都维护自己的seed,所以此时不需要CAS,直接进行put。 这里通过线程间的隔离来减少并发冲突,所以ThreadLocalRandom的性能非常高。


性能对比


通过基准工具JMH测试:

@BenchmarkMode({Mode.AverageTime})
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations=3, time = 5, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations=3,time = 5)
@Threads(4)
@Fork(1)
@State(Scope.Benchmark)
public class Myclass {
   Random random = new Random();
   ThreadLocalRandom threadLocalRandom = ThreadLocalRandom.current();
   @Benchmark
   public int measureRandom(){
       return random.nextInt();
   }
   @Benchmark
   public int threadLocalmeasureRandom(){
       return threadLocalRandom.nextInt();
   }
}

运行结果如下图所示,最左边是并发线程的数量:

1671204071480.jpg

1671204076229.jpg

显而易见,无论线程数量是多少,ThreadLocalRandom性能是远高于Random


总结


本文讲解了JDK中提供的两种生成随机数的方式,一个是JDK 1.0引入的Random类,另外一个是JDK1.7引入的ThreadLocalRandom类,由于底层的实现机制不同,ThreadLocalRandom的性能是远高于Random,建议后面大家在技术选型的时候优先使用ThreadLocalRandom

目录
相关文章
|
2月前
|
Kubernetes Cloud Native Java
云原生之旅:从容器到微服务的演进之路Java 内存管理:垃圾收集器与性能调优
【8月更文挑战第30天】在数字化时代的浪潮中,企业如何乘风破浪?云原生技术提供了一个强有力的桨。本文将带你从容器技术的基石出发,探索微服务架构的奥秘,最终实现在云端自由翱翔的梦想。我们将一起见证代码如何转化为业务的翅膀,让你的应用在云海中高飞。
|
2月前
|
存储 监控 Java
Java多线程优化:提高线程池性能的技巧与实践
Java多线程优化:提高线程池性能的技巧与实践
64 1
|
21天前
|
设计模式 Java 关系型数据库
【Java笔记+踩坑汇总】Java基础+JavaWeb+SSM+SpringBoot+SpringCloud+瑞吉外卖/谷粒商城/学成在线+设计模式+面试题汇总+性能调优/架构设计+源码解析
本文是“Java学习路线”专栏的导航文章,目标是为Java初学者和初中高级工程师提供一套完整的Java学习路线。
176 37
|
15天前
|
缓存 Java 应用服务中间件
Java虚拟线程探究与性能解析
本文主要介绍了阿里云在Java-虚拟-线程任务中的新进展和技术细节。
|
13天前
|
监控 算法 Java
深入理解Java中的垃圾回收机制在Java编程中,垃圾回收(Garbage Collection, GC)是一个核心概念,它自动管理内存,帮助开发者避免内存泄漏和溢出问题。本文将探讨Java中的垃圾回收机制,包括其基本原理、不同类型的垃圾收集器以及如何调优垃圾回收性能。通过深入浅出的方式,让读者对Java的垃圾回收有一个全面的认识。
本文详细介绍了Java中的垃圾回收机制,从基本原理到不同类型垃圾收集器的工作原理,再到实际调优策略。通过通俗易懂的语言和条理清晰的解释,帮助读者更好地理解和应用Java的垃圾回收技术,从而编写出更高效、稳定的Java应用程序。
|
28天前
|
安全 Java API
【性能与安全的双重飞跃】JDK 22外部函数与内存API:JNI的继任者,引领Java新潮流!
【9月更文挑战第7天】JDK 22外部函数与内存API的发布,标志着Java在性能与安全性方面实现了双重飞跃。作为JNI的继任者,这一新特性不仅简化了Java与本地代码的交互过程,还提升了程序的性能和安全性。我们有理由相信,在外部函数与内存API的引领下,Java将开启一个全新的编程时代,为开发者们带来更加高效、更加安全的编程体验。让我们共同期待Java在未来的辉煌成就!
49 11
|
29天前
|
安全 Java API
【本地与Java无缝对接】JDK 22外部函数和内存API:JNI终结者,性能与安全双提升!
【9月更文挑战第6天】JDK 22的外部函数和内存API无疑是Java编程语言发展史上的一个重要里程碑。它不仅解决了JNI的诸多局限和挑战,还为Java与本地代码的互操作提供了更加高效、安全和简洁的解决方案。随着FFM API的逐渐成熟和完善,我们有理由相信,Java将在更多领域展现出其强大的生命力和竞争力。让我们共同期待Java编程新纪元的到来!
47 11
|
1月前
|
缓存 监控 安全
如何提高 Java 高并发程序的性能?
以下是提升Java高并发程序性能的方法:优化线程池设置,减少锁竞争,使用读写锁和无锁数据结构。利用缓存减少重复计算和数据库查询,并优化数据库操作,采用连接池和分库分表策略。应用异步处理,选择合适的数据结构如`ConcurrentHashMap`。复用对象和资源,使用工具监控性能并定期审查代码,遵循良好编程规范。
|
2月前
|
存储 缓存 前端开发
Servlet与JSP在Java Web应用中的性能调优策略
Servlet与JSP在Java Web应用中的性能调优策略
26 1
|
2月前
|
监控 Java API
提升 Java 后台性能的十大方法
提升 Java 后台性能的十大方法
37 2
下一篇
无影云桌面