乐观锁思想在JAVA中的实现——CAS

简介: 乐观锁思想在JAVA中的实现——CAS

前言


生活中我们看待一个事物总有不同的态度,比如半瓶水,悲观的人会觉得只有半瓶水了,而乐观的人则会认为还有半瓶水呢。很多技术思想往往源于生活,因此在多个线程并发访问数据的时候,有了悲观锁和乐观锁。

  • 悲观锁认为这个数据肯定会被其他线程给修改了,那我就给它上锁,只能自己访问,要等我访问完,其他人才能访问,我上锁、解锁都得花费我时间。
  • 乐观锁认为这个数据不会被修改,我就直接访问,当我发现数据真的修改了,那我也“礼貌的”让自己访问失败。

悲观锁和乐观锁其实本质都是一种思想,在JAVA中对于悲观锁的实现大家可能都很了解,可以通过synchronizedReentrantLock加锁实现,本文不展开讲解了。那么乐观锁在JAVA中是如何实现的呢?底层的实现机制又是什么呢?


问题引入


我们用一个账户取钱的例子来说明乐观锁和悲观锁的问题。

public class AccountUnsafe {
     // 余额
     private Integer balance;
     public AccountUnsafe(Integer balance) {
      this.balance = balance;
     }
    @Override
     public Integer getBalance() {
      return balance;
     }
     @Override
     public void withdraw(Integer amount) {
      balance -= amount;
     }
}
  • 账户类,withdraw()方法是取钱方法。
public static void main(String[] args) {
        // 账户10000元
        AccountUnsafe account = new AccountUnsafe(10000);
        List<Thread> ts = new ArrayList<>();
        long start = System.nanoTime();
        // 1000个线程,每次取10元
        for (int i = 0; i < 1000; i++) {
            ts.add(new Thread(() -> {
                account.withdraw(10);
            }));
        }
        ts.forEach(Thread::start);
        ts.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        long end = System.nanoTime();
        // 打印账户余额和花费时间
        log.info("账户余额:{}, 花费时间: {}", account.getBalance(), (end-start)/1000_000 + " ms");
    }
  • 账户默认有10000元,1000个线程取钱,每次取10元,最后账户应该还有多少钱呢?

运行结果:

1671202634367.jpg

  • 运行结果显示余额还有150元,显然出现并发问题

原因分析:

原因也很简单,取钱方法withdraw()的操作balance -= amount;看着就一行代码,实际上会生成多条指令,如下图所示:

1671202639994.jpg

多个线程运行的时候会进行线程切换,导致这个操作不是原子性,所以不是线程安全的。


悲观锁解决


最简单的方法,我想大家都能想到吧,给withdraw()方法加锁,保证同一时刻只有一个线程能够执行这个方法,保证了原子性。

1671202648055.jpg

  • 通过synchronized关键字加锁。

运行结果:

1671202652832.jpg

  • 运行结果正常,但是花费时间稍微多了一点


乐观锁解决


关键来了,如果用乐观锁的思想在JAVA中该如何实现呢?

大致思路就是我默认不加任何锁,我先把余额减掉10元,最后更新余额的时候,发现余额和我一开始不一样了,我就丢弃当前更新操作,重新读取余额的值,直到更新成功。

找啊找,最终发现JDK中的Unsafe方法提供了这样的方法compareAndSwapInt


1671202660129.jpg


  • 先获取老的余额oldBalance,计算出新的余额newBalance
  • 调用 unsafe.compareAndSwapInt()方法,如果内存中余额属性的偏移量BALANCE_OFFSET对应的值等于老的余额,说明的确没有被其他线程访问修改过,我就大胆的更新为newBalance,退出方法
  • 否则的话,我就要进入下一次循环,重新获取余额计算。

那么是如何获取unsafe呢?

1671202668281.jpg

  • 静态方法中通过反射的方法获取,因为Unsafe类太底层了,它一般不建议程序员直接使用。

这个Unsafe类的名称并不是说线程不安全的意思,只是这个类太底层了,不要乱用,对程序员来说不大安全。

最后别忘了余额balance要加volatile修饰。

1671202674300.jpg

  • 主要为了保证可见性,让线程能够获取到其他线程修改的结果。

运行结果:

1671202679226.jpg

  • 余额也为0,正常,而且运行速度稍微快了一丢丢

完成代码:

@Slf4j(topic = "a.AccountCAS")
public class AccountCAS {
    // 余额
    private volatile int balance;
    // Unsafe对象
    static final Unsafe unsafe;
    // balance 字段的偏移量
    static final long BALANCE_OFFSET;
    static {
        try {
            Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");
            theUnsafe.setAccessible(true);
            unsafe = (Unsafe) theUnsafe.get(null);
            // balance 属性在 AccountCAS 对象中的偏移量,用于 Unsafe 直接访问该属性
            BALANCE_OFFSET = unsafe.objectFieldOffset(AccountCAS.class.getDeclaredField("balance"));
        } catch (NoSuchFieldException | IllegalAccessException e) {
            throw new Error(e);
        }
    }
    public AccountCAS(Integer balance) {
        this.balance = balance;
    }
    public int getBalance() {
        return balance;
    }
    public void withdraw(Integer amount) {
        // 自旋
        while (true) {
            // 获取老的余额
            int oldBalance = balance;
            // 获取新的余额
            int newBalance = oldBalance - amount;
            // 更新余额,BALANCE_OFFSET表示balance属性的偏移量, 返回true表示更新成功, false更新失败,继续更新
            if(unsafe.compareAndSwapInt(this, BALANCE_OFFSET, oldBalance, newBalance)) {
                return;
            }
        }
    }
    public static void main(String[] args) {
        // 账户10000元
        AccountCAS account = new AccountCAS(10000);
        List<Thread> ts = new ArrayList<>();
        long start = System.nanoTime();
        // 1000个线程,每次取10元
        for (int i = 0; i < 1000; i++) {
            ts.add(new Thread(() -> {
                account.withdraw(10);
            }));
        }
        ts.forEach(Thread::start);
        ts.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        long end = System.nanoTime();
        // 打印账户余额和花费时间
        log.info("账户余额:{}, 花费时间: {}", account.getBalance(), (end-start)/1000_000 + " ms");
    }
}


乐观锁改进


好麻烦呀,我们自己调用原生的UnSafe类实现乐观锁,有什么更好的方式吗?

当然有,其实JDK给我们封装了很多基于UnSafe乐观锁实现的原子类,比如AtomicIntegerAtomicReference等等。我们用AtomicInteger改写下上面的实现。


1671202692812.jpg


  • 使用JDK中的原子类AtomicInteger作为余额的类型
  • 取钱逻辑直接调用addAndGet方法

运行结果:


1671202698362.jpg


原理:


1671202715980.jpg


查看源码最终也是调用的Unsafe方法。


CAS机制


前面的一个取钱的例子,大家是不是对乐观锁的思想以及在JAVA中的实现更深入的认识。

在JAVA中对这种实现起了一个名字,叫做CAS, 全称Compare And Swap,是不是很形象,先比较,然后再替换。

那CAS的本质是什么?

CAS先比较然后再替换,感觉是有2步,比较和替换,不像是原子性操作,如果不是原子性操作问题就可大了。实际上,CAS本质对应的是一条指令,是原子操作

CAS 的底层是 lock cmpxchg 指令(X86 架构),在单核 CPU 和多核 CPU 下都能够保证【比较-交换】的原子性。

强调一点,CAS 必须借助 volatile 才能读取到共享变量的最新值来实现【比较并交换】的效果,因为volatile会保证变量的可见性。


总结


结合 CAS 和 volatile 可以实现无锁并发,适用于线程数少、多核 CPU 的场景或者读多写少的场景。

  • CAS 是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算改了也没关系,我吃亏点再重试呗。
  • synchronized 是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上了锁你们都别想改,我改完了解开锁,你们才有机会。
  • CAS 体现的是无锁并发、无阻塞并发,请仔细体会这两句话的意思
  • 因为没有使用 synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一
  • 但如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响
目录
相关文章
|
4月前
|
安全 Java API
JAVA并发编程JUC包之CAS原理
在JDK 1.5之后,Java API引入了`java.util.concurrent`包(简称JUC包),提供了多种并发工具类,如原子类`AtomicXX`、线程池`Executors`、信号量`Semaphore`、阻塞队列等。这些工具类简化了并发编程的复杂度。原子类`Atomic`尤其重要,它提供了线程安全的变量更新方法,支持整型、长整型、布尔型、数组及对象属性的原子修改。结合`volatile`关键字,可以实现多线程环境下共享变量的安全修改。
|
11天前
|
安全 算法 Java
Java CAS原理和应用场景大揭秘:你掌握了吗?
CAS(Compare and Swap)是一种乐观锁机制,通过硬件指令实现原子操作,确保多线程环境下对共享变量的安全访问。它避免了传统互斥锁的性能开销和线程阻塞问题。CAS操作包含三个步骤:获取期望值、比较当前值与期望值是否相等、若相等则更新为新值。CAS广泛应用于高并发场景,如数据库事务、分布式锁、无锁数据结构等,但需注意ABA问题。Java中常用`java.util.concurrent.atomic`包下的类支持CAS操作。
43 2
|
5月前
|
安全 Java 调度
解锁Java并发编程高阶技能:深入剖析无锁CAS机制、揭秘魔法类Unsafe、精通原子包Atomic,打造高效并发应用
【8月更文挑战第4天】在Java并发编程中,无锁编程以高性能和低延迟应对高并发挑战。核心在于无锁CAS(Compare-And-Swap)机制,它基于硬件支持,确保原子性更新;Unsafe类提供底层内存操作,实现CAS;原子包java.util.concurrent.atomic封装了CAS操作,简化并发编程。通过`AtomicInteger`示例,展现了线程安全的自增操作,突显了这些技术在构建高效并发程序中的关键作用。
77 1
|
3月前
|
缓存 NoSQL Java
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
76 3
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
|
8月前
|
算法 安全 Java
Java多线程基础-12:详解CAS算法
CAS(Compare and Swap)算法是一种无锁同步原语,用于在多线程环境中更新内存位置的值。
75 0
|
6月前
|
安全 Oracle Java
(四)深入理解Java并发编程之无锁CAS机制、魔法类Unsafe、原子包Atomic
其实在我们上一篇文章阐述Java并发编程中synchronized关键字原理的时候我们曾多次谈到过CAS这个概念,那么它究竟是什么?
131 1
|
5月前
|
算法 Java
【多线程面试题十八】、说一说Java中乐观锁和悲观锁的区别
这篇文章讨论了Java中的乐观锁和悲观锁的区别,其中悲观锁假设最坏情况并在访问数据时上锁,如通过`synchronized`或`Lock`接口实现;而乐观锁则在更新数据时检查是否被其他线程修改,适用于多读场景,并常通过CAS操作实现,如Java并发包`java.util.concurrent`中的类。
|
6月前
|
存储 缓存 Java
Java面试题:解释Java中的内存屏障的作用,解释Java中的线程局部变量(ThreadLocal)的作用和使用场景,解释Java中的锁优化,并讨论乐观锁和悲观锁的区别
Java面试题:解释Java中的内存屏障的作用,解释Java中的线程局部变量(ThreadLocal)的作用和使用场景,解释Java中的锁优化,并讨论乐观锁和悲观锁的区别
61 0
|
8月前
|
安全 Java 编译器
Java 多线程系列Ⅴ(常见锁策略+CAS+synchronized原理)
Java 多线程系列Ⅴ(常见锁策略+CAS+synchronized原理)
|
8月前
|
算法 Java
Java中CAS算法的集中体现:Atomic原子类库,你了解吗?
【5月更文挑战第15天】Java中CAS算法的集中体现:Atomic原子类库,你了解吗?
57 1