前言
在实际生活中,很多应用相关的图都是有方向性的,最直观的就是网络,可以从A页面通过链接跳转到B页面,那么a和b连接的方向是a->b,但不能说是b->a,此时我们就需要使用有向图来解决这一类问题,它和我们之前学习的无向图,最大的区别就在于连接是具有方向的,在代码的处理上也会有很大的不同。
定义及相关术语
定义:
有向图是一副具有方向性的图,是由一组顶点和一组有方向的边组成的,每条方向的边都连着一对有序的顶点。
出度:
由某个顶点指出的边的个数称为该顶点的出度。
入度:
指向某个顶点的边的个数称为该顶点的入度。
有向路径:
由一系列顶点组成,对于其中的每个顶点都存在一条有向边,从它指向序列中的下一个顶点。
有向环:
一条至少含有一条边,且起点和终点相同的有向路径。
一副有向图中两个顶点v和w可能存在以下四种关系:
- 没有边相连;
- 存在从v到w的边v—>w;
- 存在从w到v的边w—>v;
- 既存在w到v的边,也存在v到w的边,即双向连接;
API设计
类名 | Digraph |
成员变量 | 1.private final int V: 记录顶点数量2.private int E: 记录边数量3.private Queue[] adj: 邻接表 |
构造方法 | Digraph(int V):创建一个包含V个顶点但不包含边的有向图 |
成员方法 | 1.public int V():获取图中顶点的数量2.public int E():获取图中边的数量3.public void addEdge(int v,int w):向有向图中添加一条边 v->w4.public Queue adj(int v):获取由v指出的边所连接的所有顶点5.private Digraph reverse():该图的反向图 |
在api中设计了一个反向图,其因为有向图的实现中,用adj方法获取出来的是由当前顶点v指向的其他顶点,如果
能得到其反向图,就可以很容易得到指向v的其他顶点。
代码实现
/** * 有向图设计 * * @author alvin * @date 2022/11/1 * @since 1.0 **/ public class Digraph { //顶点数目 private final int V; //边的数目 private int E; //邻接表 private Queue<Integer>[] adj; public Digraph(int V){ //初始化顶点数量 this.V = V; //初始化边的数量 this.E = 0; //初始化邻接表 this.adj = new Queue[V]; for (int i = 0; i < adj.length; i++) { adj[i] = new ArrayDeque<>(); } } //获取顶点数目 public int V(){ return V; } //获取边的数目 public int E(){ return E; } //向有向图中添加一条边 v->w public void addEdge(int v, int w) { //只需要让顶点w出现在顶点v的邻接表中,因为边是有方向的,最终,顶点v的邻接表中存储的相邻顶点的含义是: v->其他顶点 adj[v].add(w); E++; } //获取由v指出的边所连接的所有顶点 public Queue<Integer> adj(int v){ return adj[v]; } //该图的反向图 private Digraph reverse(){ //创建有向图对象 Digraph r = new Digraph(V); for (int v = 0;v<V;v++){ //获取由该顶点v指出的所有边 for (Integer w : adj[v]) {//原图中表示的是由顶点v->w的边 r.addEdge(w,v);//w->v } } return r; } }