《神经网络与深度学习》第二章习题

简介: 机器学习概述,习题总结

第二章 机器学习概述

习题 2-1 分析为什么平方损失函数不适用于分类问题。

平方损失函数为:

$$ \mathcal{L}\left(y,f(\boldsymbol{x};\theta)\right)=\frac{1}{2}\left(y-f(\boldsymbol{x};\theta)\right)^2 \tag{2.14} $$

对于分类问题,例如如果一个分类问题有标签 $[1, 2, 3]$,分别代表了 $[red, green, yellow]$,假如真实分类是 1, 而被分类到 2 和 3 错误程度应该是一样的, 但是平方损失函数的损失却不相同。

习题 2-2 在线性回归中,如果我们给每个样本 $(\boldsymbol{x}^{(n)}, y^{(n)})$ 赋予一个权重 $r^{(n)}$,经验风险函数为

$$ \mathcal{R}(\boldsymbol{w}) = \frac{1}{2}\sum_{n=1}^{N}r^{(n)}(y^{(n)}-\boldsymbol{w}^\mathrm{T}\boldsymbol{x}^{(n)})^2 \tag{2.91} $$

计算其最优参数 $\boldsymbol{w}^*$,并分析权重 $r^{(n)}$ 的作用。

$$ \begin{aligned} \frac{\partial}{\partial{\boldsymbol{w}}}\mathcal{R}(\boldsymbol{w}) & = \frac{1}{2}\sum_{n=1}^{N}r^{(n)}\frac{\partial\left\|\boldsymbol{y}-\boldsymbol{X}^\mathrm{T}\boldsymbol{w}\right\|^2}{\partial\boldsymbol{w}} = 0 \\ \boldsymbol{w}^{*} & = \sum_{n=1}^{N} r^{(n)}\left(\boldsymbol{X} \boldsymbol{X}^{\mathrm{T}}\right)^{-1} \boldsymbol{X} \boldsymbol{y} \end{aligned} $$

习题 2-3 证明在线性回归中,如果样本数量 $N$ 小于特征数量 $D+1$,则 $\boldsymbol{X}\boldsymbol{X}^{\mathrm{T}}$ 的秩最大为 $N$。

矩阵 $\boldsymbol{X}=[\boldsymbol{x}^{(1)},\boldsymbol{x}^{(2)},...,\boldsymbol{x}^{(n)}]$,样本数 $N$ 比特征数量 $D+1$ 还小,故 $\boldsymbol{X}$ 的秩肯定不会超过 $N$,而 $rank(\boldsymbol{X} \boldsymbol{X}^{\mathrm{T}})=rank(\boldsymbol{X})$ 故其秩最大也只能是 $N$。

这相当于线性方程组的未知数个数大于方程个数,是不存在唯一的非零解的。

习题 2-4 在线性回归中,验证岭回归的解为结构风险最小化准则下的最小二乘法估计,见公式(2.44)。

$$ \begin{aligned} \frac{\partial \mathcal{R}(\boldsymbol{w})}{\partial \boldsymbol{w}} &=\frac{1}{2} \frac{\partial\left\|\boldsymbol{y}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{w}\right\|^{2}+\lambda\|\boldsymbol{w}\|^{2}}{\partial \boldsymbol{w}} \\ &=-\boldsymbol{X}\left(\boldsymbol{y}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{w}\right)+\lambda \boldsymbol{w} \end{aligned} $$

令 $\frac{\partial}{\partial{\boldsymbol{w}}}\mathcal{R}(\boldsymbol{w})=0$ 可得:

$$ -\boldsymbol{X} \boldsymbol{Y}+\boldsymbol{X} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{w}+\lambda \boldsymbol{w}=0\\ \left(\boldsymbol{X}\boldsymbol{X}^{\mathrm{T}}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\boldsymbol{X} \boldsymbol{Y} $$

即:$\boldsymbol{w}^{*}=\left(\boldsymbol{X}\boldsymbol{X}^{\mathrm{T}}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X} \boldsymbol{y}$。

习题 2-5 在线性回归中,若假设标签 $y\sim\mathcal{N}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x},\beta)$,并用最大似然估计来优化参数,验证最优参数为公式(2.52)的解。

$$ \begin{aligned} \log p(\boldsymbol{y}|\boldsymbol{X} ; \boldsymbol{w}, \beta) & = \sum_{n=1}^{N} \log \mathcal{N}\left(y^{(n)} ; \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}^{(n)}, \beta\right) \\ & = \sum_{n=1}^{N} \log \left(\frac{1}{\sqrt{2 \pi \beta}} \exp \left(-\frac{\left(y^{(n)}-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)^{2}}{2 \beta}\right)\right) \\ & = \sum_{n=1}^{N} \log \frac{1}{\sqrt{2 \pi \beta}}+\sum_{n=1}^{N} \log \left(\exp \left(-\frac{\left(y^{(n)}-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)^{2}}{2 \beta}\right)\right) \end{aligned} $$

对于等式的第一部分只是一个常数,其对 $\boldsymbol{w}$ 求导为零,所以只看后面的部分。

后面部分可以化简为

$$ \sum_{n=1}^{N} \left(-\frac{\left(y^{(n)}-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)^{2}}{2 \beta}\right) $$

:在计算机或者说人工智能中,代码上的 $\log$ 通常都是以 $e$ 为底的,即代表 $\ln$。

所以,把分母的 $2\beta$ 提出去,最大似然函数对 $\boldsymbol{w}$ 的求导函数又变成了 $-\frac{1}{2\beta}\left\|\boldsymbol{y}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{w}\right\|^2$,参考最小二乘法可以知道,最优参数为

$$ \boldsymbol{w}^{ML}=\left(\boldsymbol{X}\boldsymbol{X}^{\mathrm{T}}\right)^{-1} \boldsymbol{X} \boldsymbol{y} \tag{2.52} $$

习题 2-6 假设有 $N$ 个样本 $x^{(1)},x^{(2)},...,x^{(N)}$ 服从正态分布 $\mathcal{N}(\mu,\sigma^2)$,其中 $\mu$ 未知。1)使用最大似然估计来求解最优参数 $\mu^{ML}$;2)若参数 $\mu$ 为随机变量,并服从正态分布 $\mathcal{N}(\mu_0,\sigma_0^2)$,使用最大后验估计来求解最优参数 $\mu^{MAP}$。

(1)问

习题 2-5 基本一样,就是变量表示变了

$$ \begin{aligned} \log p(\boldsymbol{x}|\mu ; \sigma^2) & = \sum_{n=1}^{N} \log \mathcal{N}\left(x^{(n)} ; \mu, \sigma^2\right) \\ & = \sum_{n=1}^{N} \log \left(\frac{1}{\sqrt{2 \pi}\sigma} \exp \left(-\frac{\left(x^{(n)}-\mu\right)^{2}}{2 \sigma^2}\right)\right) \\ & = \sum_{n=1}^{N} \log \frac{1}{\sqrt{2 \pi}\sigma}+\sum_{n=1}^{N}\left(-\frac{\left(x^{(n)}-\mu\right)^{2}}{2 \sigma^2}\right) \end{aligned} $$

等式右边的第二项对 $\mu$ 求导,并令其等于零,得 $\mu^{ML}=\boldsymbol{x}$

(2)问

由贝叶斯公式得参数 $\mu$ 的后验分布为 $p(\mu|\boldsymbol{x};v,\sigma)\propto p(\boldsymbol{x}|\mu;\sigma) p(\mu;v)$,两边取对数

$$ \begin{aligned} \log p(\mu|\boldsymbol{x};v,\sigma) & \propto \log p(\boldsymbol{x}|\mu,\sigma)+\log p(\mu;v) \\ & \propto-\frac{1}{2 \sigma^{2}}\left\|\boldsymbol{x}-\mu\right\|^{2}-\frac{1}{2 v^{2}} \mu^2 \end{aligned} $$

对 $\mu$ 进行求导可以解得 $\mu^{MAP}=\frac{v^2}{v^2+\sigma^2}\boldsymbol{x}$。

习题 2-7 在习题 2-6 中,证明当 $N\rightarrow\infty$ 时,最大后验估计趋向于最大似然估计。

习题 2-9 试分析什么因素会导致模型出现图 2.6 所示的高偏差高方差情况。

一般来说,高偏差是因为模型欠拟合了,高方差是因为模型过拟合了,如果两个都偏高,那么模型可能出现了问题,或者不能够用来解决给定的问题。

习题 2-11 分别用一元、二元和三元特征的词袋模型表示文本「我打了张三」和「张三打了我」,并分析不同模型的优缺点。

首先这句话可以分为三个词:我 | 打了 | 张三,加上文本的开始 $ 和结束 \#。

一元特征:$ | 我 | 打了 | 张三 | \#

二元特征:$ | $我 | 我打了 | 打了张三 | 张三\#

三元特征:$ | $我打了 | 我打了张三 | 打了张三\#

习题 2-12 对于一个三分类问题,数据集的真实标签和模型的预测标签分别为:$[1,1,2,2,2,3,3,3,3]$ 和 $[1,2,2,2,3,3,3,1,2]$,分别计算模型的精确率、召回率、$\mathcal{F1}$ 值以及它们的宏平均和微平均。

$$ \boldsymbol{\mathcal{P}}=[\frac{1}{2},\frac{1}{2},\frac{2}{3}] , \boldsymbol{\mathcal{R}}=[\frac{1}{2},\frac{2}{3},\frac{1}{2}] , \boldsymbol{\mathcal{F1}}=[\frac{1}{2},\frac{4}{7},\frac{4}{7}] \\ \, \\ \, \mathcal{P_{macro}}= \frac{5}{9}, \mathcal{R_{macro}}= \frac{5}{9}, \mathcal{F1_{macro}}= \frac{5}{9} $$

目录
相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
78 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
12天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
37 3
|
20天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
44 8
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
66 7
|
18天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
21 1
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
21天前
|
机器学习/深度学习 自动驾驶 TensorFlow
深度学习与图像识别:探索神经网络的奥秘
在这篇文章中,我们将一同跳入深度学习的海洋,探索其如何改变我们处理和理解图像的方式。通过直观的代码示例和浅显易懂的解释,我们将揭开深度学习在图像识别领域应用的神秘面纱。无论你是编程新手还是深度学习爱好者,这篇文章都将为你开启一段新的认知旅程。让我们一起跟随代码的步伐,见证技术如何赋予机器“视觉”。
|
25天前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
38 1