keras搭建基于自动编码器的异常检测技术进行欺诈识别(二)

本文涉及的产品
MSE Nacos/ZooKeeper 企业版试用,1600元额度,限量50份
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,182元/月
简介: keras搭建基于自动编码器的异常检测技术进行欺诈识别(二)

自动编码器将我们的数据编码到一个子空间,并且在对数据进行归一化时将其解码为相应的特征。我们希望自动编码器能够学习到在归一化转换时的特征,并且在应用时这个输入和输出是类似的。而对于异常情况,由于它是欺诈数据,所以输入和输出将会明显不同。

这种方法的好处是它允许使用无监督的学习方式,毕竟在我们通常所使用的数据中,大部分的数据均为正常交易数据。并且数据的标签通常是难以获得的,而且在某些情况下完全没法使用,例如手动对数据进行标记往往存在人为认识偏差等问题。从而,在对模型进行训练的过程中,我们只使用没有标签的正常交易数据。

接下来,让我们下载数据并训练自动编码器:

df = pd.read_csv('creditcard.csv')
x = df[df.columns[1:30]].to_numpy()
y = df[df.columns[30]].to_numpy()
# prepare data
df = pd.concat([pd.DataFrame(x), pd.DataFrame({'anomaly': y})], axis=1)
normal_events = df[df['anomaly'] == 0]
abnormal_events = df[df['anomaly'] == 1]
normal_events = normal_events.loc[:, normal_events.columns != 'anomaly']
abnormal_events = abnormal_events.loc[:, abnormal_events.columns != 'anomaly']
# scaling
scaler = preprocessing.MinMaxScaler()
scaler.fit(df.drop('anomaly', 1))
scaled_data = scaler.transform(normal_events)
# 80% percent of dataset is designated to training
train_data, test_data = model_selection.train_test_split(scaled_data, test_size=0.2)
n_features = x.shape[1]
# model
encoder = models.Sequential(name='encoder')
encoder.add(layer=layers.Dense(units=20, activation=activations.relu, input_shape=[n_features]))
encoder.add(layers.Dropout(0.1))
encoder.add(layer=layers.Dense(units=10, activation=activations.relu))
encoder.add(layer=layers.Dense(units=5, activation=activations.relu))
decoder = models.Sequential(name='decoder')
decoder.add(layer=layers.Dense(units=10, activation=activations.relu, input_shape=[5]))
decoder.add(layer=layers.Dense(units=20, activation=activations.relu))
decoder.add(layers.Dropout(0.1))
decoder.add(layer=layers.Dense(units=n_features, activation=activations.sigmoid))
autoencoder = models.Sequential([encoder, decoder])
autoencoder.compile(
loss=losses.MSE,
optimizer=optimizers.Adam(),
metrics=[metrics.mean_squared_error])
# train model
es = EarlyStopping(monitor='val_loss', min_delta=0.00001, patience=20, restore_best_weights=True)
history = autoencoder.fit(x=train_data, y=train_data, epochs=100, verbose=1, validation_data=[test_data, test_data], callbacks=[es])
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()


观察下图可知,该模型的误差大约为8.5641e-04,而误差最小时约为5.4856e-04。

image.png

使用该模型,我们能够计算出正常交易时的均方根误差,并且还能知道当需要均方根误差值为95%时,阈值应该设置为多少。

train_predicted_x = autoencoder.predict(x=train_data)
train_events_mse = losses.mean_squared_error(train_data, train_predicted_x)
cut_off = np.percentile(train_events_mse, 95)

我们设置的阈值为0.002,如果均方根误差大于0.002时,我们就把这次的交易视为异常交易,即有欺诈行为出现。让我们选取100个欺诈数据和100个正常数据作为样本,结合阈值能够绘制如下图:

plot_samples = 100
# normal event
real_x = test_data[:plot_samples].reshape(plot_samples, n_features)
predicted_x = autoencoder.predict(x=real_x)
normal_events_mse = losses.mean_squared_error(real_x, predicted_x)
normal_events_df = pd.DataFrame({
'mse': normal_events_mse,
'n': np.arange(0, plot_samples),
'anomaly': np.zeros(plot_samples)})
# abnormal event
abnormal_x = scaler.transform(abnormal_events)[:plot_samples].reshape(plot_samples, n_features)
predicted_x = autoencoder.predict(x=abnormal_x)
abnormal_events_mse = losses.mean_squared_error(abnormal_x, predicted_x)
abnormal_events_df = pd.DataFrame({
'mse': abnormal_events_mse,
'n': np.arange(0, plot_samples),
'anomaly': np.ones(plot_samples)})
mse_df = pd.concat([normal_events_df, abnormal_events_df])
plot = sns.lineplot(x=mse_df.n, y=mse_df.mse, hue=mse_df.anomaly)
line = lines.Line2D(
xdata=np.arange(0, plot_samples),
ydata=np.full(plot_samples, cut_off),
color='#CC2B5E',
linewidth=1.5,
linestyle='dashed')
plot.add_artist(line)
plt.title('Threshlold: {threshold}'.format(threshold=cut_off))
plt.show()

image.png

由上图可知,与正常交易数据相比,绝大部分欺诈数据均有较高的均方根误差,从而这个方法对欺诈数据的识别似乎非常奏效。

虽然我们放弃了5%的正常交易,但仍然存在低于阈值的欺诈交易。这或许可以通过使用更好的特征提取方法来进行改进,因为一些欺诈数据与正常交易数据具有非常相似的特征。例如,对于信用卡欺诈而言,如果交易是在不同国家发生的,那么比较有价值的特征是:前一小时、前一天、前一周的交易数量。

下一步的工作

1. 对超参数进行优化。

2. 使用一些数据分析方法来更好的理解数据的特征。

3.将上述方法与其他机器学习的方法相比较,例如:支持向量机或k-means聚类等等。

本文的完整代码均能在Github上进行获取。

https://github.com/bgokden/anomaly-detection-with-autoencoders


引用文献

1. Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and GianlucaBontempi. Calibrating Probability with Undersampling for UnbalancedClassification. In Symposium on Computational Intelligence and DataMining (CIDM), IEEE, 2015

2. Dal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael;Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit cardfraud detection from a practitioner perspective, Expert systems withapplications,41,10,4915--4928,2014, Pergamon

3. Dal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi,Cesare; Bontempi, Gianluca. Credit card fraud detection: a realisticmodeling and a novel learning strategy, IEEE transactions on neuralnetworks and learning systems,29,8,3784--3797,2018,IEEE

4. Dal Pozzolo, Andrea Adaptive Machine learning for credit card frauddetection ULB MLG PhD thesis (supervised by G. Bontempi)

5. Carcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-Aël;Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalableframework for streaming credit card fraud detection with Spark,Information fusion,41, 182--194,2018,Elsevier

6. Carcillo, Fabrizio; Le Borgne, Yann-Aël; Caelen, Olivier; Bontempi,Gianluca. Streaming active learning strategies for real-life credit cardfraud detection: assessment and visualization, International Journal ofData Science and Analytics, 5,4,285--300,2018,Springer InternationalPublishing

7.Bertrand Lebichot, Yann-Aël Le Borgne, Liyun He, Frederic Oblé,Gianluca Bontempi Deep-Learning Domain Adaptation Techniques for CreditCards Fraud Detection, INNSBDDL 2019: Recent Advances in Big Data andDeep Learning, pp 78--88, 2019

8. Fabrizio Carcillo, Yann-Aël Le Borgne, Olivier Caelen, FredericOblé, Gianluca Bontempi Combining Unsupervised and Supervised Learningin Credit Card Fraud Detection Information Sciences, 2019

目录
相关文章
|
机器学习/深度学习 供应链 安全
TSMixer:谷歌发布的用于时间序列预测的全新全mlp架构
这是谷歌在9月最近发布的一种新的架构 TSMixer: An all-MLP architecture for time series forecasting ,TSMixer是一种先进的多元模型,利用线性模型特征,在长期预测基准上表现良好。据我们所知,TSMixer是第一个在长期预测基准上表现与最先进的单变量模型一样好的多变量模型,在长期预测基准上,表明交叉变量信息不太有益。”
657 1
|
运维 算法 安全
异常检测算法及其在安全领域的应用
【6月更文挑战第4天】在数字化时代,数据安全至关重要,异常检测算法扮演着守护者角色。它能自动学习正常行为模式,及时发现网络攻击和欺诈行为。非监督式异常检测算法尤其重要,如基于距离的方法,通过计算数据点间距离识别偏离常规的点。Python的scikit-learn库可实现这一算法。异常检测不仅应用于金融领域的欺诈检测,还广泛用于工业监控、医疗诊断和社交媒体分析,为多领域数据安全提供保障。随着技术进步,异常检测将更智能、高效,成为数据安全的重要防线。
353 2
|
机器学习/深度学习 运维 监控
从 2023 CCF AIOps 挑战赛看日志异常检测
2023年的 CCF AIOps 挑战赛相较往年主要有以下不同:赛题的形式从命题式转变为开放式、比赛场景的丰富度进一步提升。
135354 4
从 2023 CCF AIOps 挑战赛看日志异常检测
|
SQL 关系型数据库 MySQL
Pandas获取SQL数据库read_sql()函数及参数一文详解+实例代码
Pandas获取SQL数据库read_sql()函数及参数一文详解+实例代码
7478 0
Pandas获取SQL数据库read_sql()函数及参数一文详解+实例代码
|
Android开发
09. 【Android教程】表格布局 TableLayout
09. 【Android教程】表格布局 TableLayout
231 0
|
JavaScript
vue踩坑:error 'res' is assigned a value but never used no-unused-vars
vue踩坑:error 'res' is assigned a value but never used no-unused-vars
328 1
|
XML Java 数据格式
如何在Filter中使用Spring容器中的Bean?
如何在Filter中使用Spring容器中的Bean?
430 0
|
存储 安全 程序员
CSDN网站六百万用户信息外泄
事情发生很多年了,但是今天还是发给大家看一下,明文密码,以及设置密码习惯的危害,有人对这些数据密码进行了分析,感兴趣的可以去google标题内容。
|
安全 API
api漏洞系列-邮箱验证API接口无限制,可作为邮箱炸弹
漏洞描述 https://admin.phacility.com/settings/user/toma/page/email/ 中的API接口是无限的,可以用作邮箱炸弹。
530 4
api漏洞系列-邮箱验证API接口无限制,可作为邮箱炸弹
|
机器学习/深度学习 算法 计算机视觉
利用VAE和LSTM生成时间序列
利用VAE和LSTM生成时间序列
657 0
利用VAE和LSTM生成时间序列