MobileNet原理+手写python代码实现MobileNet

简介: MobileNet原理+手写python代码实现MobileNet

MobileNet原理+手写python代码实现MobileNet


最近看到一个巨牛的人工智能教程,分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。平时碎片时间可以当小说看,【点这里可以去膜拜一下大神的“小说”】。

MobileNet是针对移动端优化的卷积,所以当需要压缩模型时,可以考虑使用MobileNet替换卷积。下面我们开始学习MobileNet原理,并且先通过Tensorflow函数接口实现MobileNet,再手写python代码实现MobileNet。

转载请注明出处:【huachao1001的专栏:https://blog.csdn.net/huachao1001/article/details/79171447

1 对比普通卷积和MobileNet原理

MobileNet是用于替换普通卷积,相比普通卷积,MobileNet参数更少,计算速度更快。我们先看一下输入为(h=12,w=12,c=4),卷积为3*3,输出为(h=12,w=12,c=2)前向计算中,普通卷积的参数量、乘法计算次数。普通卷积如下图所示:

从上图可以很简单的计算到,普通卷积参数总数为72个,需要做10368次乘法计算。

相比普通卷积,MobileNet采用的方法是,将卷积分解为2个操作:depthwise和pointwise。pointwise比较容易理解,就是普通的卷积核为11的卷积。depthwise采用的方法不是普通卷积方式,我们知道,对于输入通道数为4的feature map在计算卷积时,输出的每个通道都需要对应4个33卷积核参数。这一步是最主要的耗时,为了提升计算速度,MobileNet把每个输入feature map对应一个33卷积核,输出通道数不变,即为4。而真正对通道数做改变的是在pointwise,也就是11的卷积。

注意:上面面论述针对的是输入为(h=12,w=12,c=4),卷积为3*3,输出为(h=12,w=12,c=2) 这种情况举例说明。

下面图很清晰的理解mobilenet原理:


从上图可以很简单的计算到,普通卷积参数总数为72个,需要做10368次乘法计算。

相比普通卷积,MobileNet采用的方法是,将卷积分解为2个操作:depthwise和pointwise。pointwise比较容易理解,就是普通的卷积核为11的卷积。depthwise采用的方法不是普通卷积方式,我们知道,对于输入通道数为4的feature map在计算卷积时,输出的每个通道都需要对应4个33卷积核参数。这一步是最主要的耗时,为了提升计算速度,MobileNet把每个输入feature map对应一个33卷积核,输出通道数不变,即为4。而真正对通道数做改变的是在pointwise,也就是11的卷积。

注意:上面面论述针对的是输入为(h=12,w=12,c=4),卷积为3*3,输出为(h=12,w=12,c=2) 这种情况举例说明。

下面图很清晰的理解mobilenet原理:

从上图可以很简单的计算到,普通卷积参数总数为44个,需要做6336次乘法计算。可以看到,mobilenet的参数和乘法计算次数明显比普通卷积要小。这还仅仅是我列举的简单例子,在实际网络中,几十层的网络很常见,feature map也是远远大于12124。根据我的经验,普通100M的网络模型,将所有卷积替换成mobilenet后,能降到20M以下,计算速度更是不在一个量级。

2 Tensorflow中使用MobileNet

在Tensorflow中,有depthwise对应的函数接口,直接调用就可以了。由于pointwise就是普通的卷积核大小为1*1的卷积,而卷积的原理,我们在《Tensorflow卷积实现原理+手写python代码实现卷积》一文中已经讲的很清楚了。所以我们只要关注depthwise即可。

在Tensorflow中,depthwise操作接口是:

tf.nn.depthwise_conv2d(
    input,
    filter,
    strides,
    padding,
    rate=None,
    name=None,
    data_format=None
)

假设我们的输入和卷积核如下:

 #输入,shape=[c,h,w]=[2,5,5]
input_data=[
              [[1,0,1,2,1],
               [0,2,1,0,1],
               [1,1,0,2,0],
               [2,2,1,1,0],
               [2,0,1,2,0]],
               [[2,0,2,1,1],
                [0,1,0,0,2],
                [1,0,0,2,1],
                [1,1,2,1,0],
                [1,0,1,1,1]],
            ]
#卷积核,shape=[in_c,k,k]=[2,3,3]
weights_data=[ 
               [[ 1, 0, 1],
                [-1, 1, 0],
                [ 0,-1, 0]],
               [[-1, 0, 1],
                [ 0, 0, 1],
                [ 1, 1, 1]] 
             ]

下面我们贴上完整调用depthwise的代码:

import tensorflow as tf
def get_shape(tensor):
    [s1,s2,s3]= tensor.get_shape() 
    s1=int(s1)
    s2=int(s2)
    s3=int(s3)
    return s1,s2,s3
def chw2hwc(chw_tensor): 
    [c,h,w]=get_shape(chw_tensor) 
    cols=[]
    for i in range(c):
        #每个通道里面的二维数组转为[w*h,1]即1列 
        line = tf.reshape(chw_tensor[i],[h*w,1])
        cols.append(line)
    #横向连接,即将所有竖直数组横向排列连接
    input = tf.concat(cols,1)#[w*h,c]
    #[w*h,c]-->[h,w,c]
    input = tf.reshape(input,[h,w,c])
    return input
def hwc2chw(hwc_tensor):
    [h,w,c]=get_shape(hwc_tensor) 
    cs=[] 
    for i in range(c): 
        #[h,w]-->[1,h,w] 
        channel=tf.expand_dims(hwc_tensor[:,:,i],0)
        cs.append(channel)
    #[1,h,w]...[1,h,w]---->[c,h,w]
    input = tf.concat(cs,0)#[c,h,w]
    return input
def tf_depthwise(input,weights ):
    depthwise=tf.nn.depthwise_conv2d( input, weights, [1, 1, 1, 1], padding='SAME' ) 
    return depthwise
def main(): 
    const_input = tf.constant(input_data , tf.float32)
    const_weights = tf.constant(weights_data , tf.float32 ) 
    input = tf.Variable(const_input,name="input")
    #[2,5,5]------>[5,5,2]
    input=chw2hwc(input)
    #[5,5,2]------>[1,5,5,2]
    input=tf.expand_dims(input,0) 
    weights = tf.Variable(const_weights,name="weights")
    #[2,3,3]-->[3,3,2]
    weights=chw2hwc(weights)
    #[3,3,2]-->[3,3,2,1]
    weights=tf.expand_dims(weights,3) 
    print(weights.get_shape().as_list())
    #[b,h,w,c]
    conv=tf_depthwise(input,weights )
    rs=hwc2chw(conv[0]) 
    init=tf.global_variables_initializer()
    sess=tf.Session()
    sess.run(init)
    conv_val = sess.run(rs)
    print(conv_val) 
if __name__=='__main__':
    main()

打印结果如下:

[[[ 1. -3.  0.  1. -2.]
  [-1.  3.  1. -1.  3.]
  [ 1. -1.  0.  3. -2.]
  [ 1.  1.  1. -2.  1.]
  [ 4.  1.  4.  2. -1.]]
 [[ 1.  3.  2.  3.  2.]
  [ 2.  1.  3.  4.  2.]
  [ 3.  4.  5.  6.  1.]
  [ 2.  3.  5.  4.  0.]
  [ 1.  2.  1. -1. -1.]]]

我们通过一个动画演示计算过程:

微信图片_20221214203650.gif

3 手写python代码实现depthwise

import numpy as np
input_data=[
              [[1,0,1,2,1],
               [0,2,1,0,1],
               [1,1,0,2,0],
               [2,2,1,1,0],
               [2,0,1,2,0]],
               [[2,0,2,1,1],
                [0,1,0,0,2],
                [1,0,0,2,1],
                [1,1,2,1,0],
                [1,0,1,1,1]] 
            ]
weights_data=[ 
               [[ 1, 0, 1],
                [-1, 1, 0],
                [ 0,-1, 0]],
               [[-1, 0, 1],
                [ 0, 0, 1],
                [ 1, 1, 1]] 
           ]
#fm:[h,w]
#kernel:[k,k]
#return rs:[h,w] 
def compute_conv(fm,kernel):
    [h,w]=fm.shape
    [k,_]=kernel.shape 
    r=int(k/2)
    #定义边界填充0后的map
    padding_fm=np.zeros([h+2,w+2],np.float32)
    #保存计算结果
    rs=np.zeros([h,w],np.float32)
    #将输入在指定该区域赋值,即除了4个边界后,剩下的区域
    padding_fm[1:h+1,1:w+1]=fm 
    #对每个点为中心的区域遍历
    for i in range(1,h+1):
        for j in range(1,w+1): 
            #取出当前点为中心的k*k区域
            roi=padding_fm[i-r:i+r+1,j-r:j+r+1]
            #计算当前点的卷积,对k*k个点点乘后求和
            rs[i-1][j-1]=np.sum(roi*kernel)
    return rs
def my_depthwise(chw_input,chw_weights):
    [c,_,_]=chw_input.shape
    [_,k,_]=chw_weights.shape
    #outputs=np.zeros([h,w],np.float32)
    outputs=[] #注意跟conv的区别
    #对每个feature map遍历,从而对每个feature map进行卷积
    for i in range(c):
        #feature map==>[h,w]
        f_map=chw_input[i]
        #kernel ==>[k,k]
        w=chw_weights[i]
        rs =compute_conv(f_map,w)
        #outputs=outputs+rs   
        outputs.append(rs) #注意跟conv的区别
    return np.array( outputs)
def main():  
    #shape=[c,h,w]
    input = np.asarray(input_data,np.float32)
    #shape=[in_c,k,k]
    weights =  np.asarray(weights_data,np.float32) 
    rs=my_depthwise(input,weights) 
    print(rs) 
if __name__=='__main__':
    main() 

同样,注释写的很清楚,不再解释代码。运行结果如下:

[[[ 1. -3.  0.  1. -2.]
  [-1.  3.  1. -1.  3.]
  [ 1. -1.  0.  3. -2.]
  [ 1.  1.  1. -2.  1.]
  [ 4.  1.  4.  2. -1.]]
 [[ 1.  3.  2.  3.  2.]
  [ 2.  1.  3.  4.  2.]
  [ 3.  4.  5.  6.  1.]
  [ 2.  3.  5.  4.  0.]
  [ 1.  2.  1. -1. -1.]]]

可以看到,跟tensorflow的结果是一模一样。

我的博客即将搬运同步至腾讯云+社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=1dx8guzo2jdpp

相关文章
|
8天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
11天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
8天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
16 1
|
13天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
8天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
13天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
26 5
|
11天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
25 2
|
13天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
49 4
|
13天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
25 2
|
13天前
|
搜索推荐 Python
快速排序的 Python 实践:从原理到优化,打造你的排序利器!
本文介绍了 Python 中的快速排序算法,从基本原理、实现代码到优化方法进行了详细探讨。快速排序采用分治策略,通过选择基准元素将数组分为两部分,递归排序。文章还对比了快速排序与冒泡排序的性能,展示了优化前后快速排序的差异。通过这些分析,帮助读者理解快速排序的优势及优化的重要性,从而在实际应用中选择合适的排序算法和优化策略,提升程序性能。
28 1
下一篇
无影云桌面