Tensorflow卷积实现原理+手写python代码实现卷积

简介: Tensorflow卷积实现原理+手写python代码实现卷积

Tensorflow卷积实现原理+手写python代码实现卷积


最近看到一个巨牛的人工智能教程,分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。平时碎片时间可以当小说看,【点这里可以去膜拜一下大神的“小说”】。

从一个通道的图片进行卷积生成新的单通道图的过程很容易理解,对于多个通道卷积后生成多个通道的图理解起来有点抽象。本文以通俗易懂的方式讲述卷积,并辅以图片解释,能快速理解卷积的实现原理。最后手写python代码实现卷积过程,让Tensorflow卷积在我们面前不再是黑箱子!

注意:

本文只针对batch_size=1,padding='SAME',stride=[1,1,1,1]进行实验和解释,其他如果不是这个参数设置,原理也是一样。

1 Tensorflow卷积实现原理

先看一下卷积实现原理,对于in_c个通道的输入图,如果需要经过卷积后输出out_c个通道图,那么总共需要in_c * out_c个卷积核参与运算。参考下图:

如上图,输入为[h:5,w:5,c:4],那么对应输出的每个通道,需要4个卷积核。上图中,输出为3个通道,所以总共需要3*4=12个卷积核。对于单个输出通道中的每个点,取值为对应的一组4个不同的卷积核经过卷积计算后的和。

接下来,我们以输入为2个通道宽高分别为5的输入、3*3的卷积核、1个通道宽高分别为5的输出,作为一个例子展开。

2个通道,5*5的输入定义如下:

#输入,shape=[c,h,w]
input_data=[
              [[1,0,1,2,1],
               [0,2,1,0,1],
               [1,1,0,2,0],
               [2,2,1,1,0],
               [2,0,1,2,0]],
               [[2,0,2,1,1],
                [0,1,0,0,2],
                [1,0,0,2,1],
                [1,1,2,1,0],
                [1,0,1,1,1]],
            ]

对于输出为1通道map,根据前面计算方法,需要2*1个卷积核。定义卷积核如下:

#卷积核,shape=[in_c,k,k]=[2,3,3]
weights_data=[ 
               [[ 1, 0, 1],
                [-1, 1, 0],
                [ 0,-1, 0]],
               [[-1, 0, 1],
                [ 0, 0, 1],
                [ 1, 1, 1]] 
             ]

上面定义的数据,在接下来的计算对应关系将按下图所描述的方式进行。

由于Tensorflow定义的tensor的shape为[n,h,w,c],这里我们可以直接把n设为1,即batch size为1。还有一个问题,就是我们刚才定义的输入为[c,h,w],所以需要将[c,h,w]转为[h,w,c]。转换方式如下,注释已经解释很详细,这里不再解释。

def get_shape(tensor):
    [s1,s2,s3]= tensor.get_shape() 
    s1=int(s1)
    s2=int(s2)
    s3=int(s3)
    return s1,s2,s3
def chw2hwc(chw_tensor): 
    [c,h,w]=get_shape(chw_tensor) 
    cols=[]
    for i in range(c):
        #每个通道里面的二维数组转为[w*h,1]即1列 
        line = tf.reshape(chw_tensor[i],[h*w,1])
        cols.append(line)
    #横向连接,即将所有竖直数组横向排列连接
    input = tf.concat(cols,1)#[w*h,c]
    #[w*h,c]-->[h,w,c]
    input = tf.reshape(input,[h,w,c])
    return input

同理,Tensorflow使用卷积核的时候,使用的格式是[k,k,in_c,out_c]。而我们在定义卷积核的时候,是按[in_c,k,k]的方式定义的,这里需要将[in_c,k,k]转为[k,k,in_c],由于为了简化工作量,我们规定输出为1个通道,即out_c=1。所以这里我们可以直接简单地对weights_data调用chw2hwc,再在第3维度扩充一下即可。

接下来,贴出完整的代码:

import tensorflow as tf
import numpy as np
input_data=[
              [[1,0,1,2,1],
               [0,2,1,0,1],
               [1,1,0,2,0],
               [2,2,1,1,0],
               [2,0,1,2,0]],
               [[2,0,2,1,1],
                [0,1,0,0,2],
                [1,0,0,2,1],
                [1,1,2,1,0],
                [1,0,1,1,1]],
            ]
weights_data=[ 
               [[ 1, 0, 1],
                [-1, 1, 0],
                [ 0,-1, 0]],
               [[-1, 0, 1],
                [ 0, 0, 1],
                [ 1, 1, 1]] 
           ]
def get_shape(tensor):
    [s1,s2,s3]= tensor.get_shape() 
    s1=int(s1)
    s2=int(s2)
    s3=int(s3)
    return s1,s2,s3
def chw2hwc(chw_tensor): 
    [c,h,w]=get_shape(chw_tensor) 
    cols=[]
    for i in range(c):
        #每个通道里面的二维数组转为[w*h,1]即1列 
        line = tf.reshape(chw_tensor[i],[h*w,1])
        cols.append(line)
    #横向连接,即将所有竖直数组横向排列连接
    input = tf.concat(cols,1)#[w*h,c]
    #[w*h,c]-->[h,w,c]
    input = tf.reshape(input,[h,w,c])
    return input
def hwc2chw(hwc_tensor):
    [h,w,c]=get_shape(hwc_tensor) 
    cs=[] 
    for i in range(c): 
        #[h,w]-->[1,h,w] 
        channel=tf.expand_dims(hwc_tensor[:,:,i],0)
        cs.append(channel)
    #[1,h,w]...[1,h,w]---->[c,h,w]
    input = tf.concat(cs,0)#[c,h,w]
    return input
def tf_conv2d(input,weights):
    conv = tf.nn.conv2d(input, weights, strides=[1, 1, 1, 1], padding='SAME')
    return conv
def main(): 
    const_input = tf.constant(input_data , tf.float32)
    const_weights = tf.constant(weights_data , tf.float32 )
    input = tf.Variable(const_input,name="input")
    #[2,5,5]------>[5,5,2]
    input=chw2hwc(input)
    #[5,5,2]------>[1,5,5,2]
    input=tf.expand_dims(input,0)
    weights = tf.Variable(const_weights,name="weights")
    #[2,3,3]-->[3,3,2]
    weights=chw2hwc(weights)
    #[3,3,2]-->[3,3,2,1]
    weights=tf.expand_dims(weights,3) 
    #[b,h,w,c]
    conv=tf_conv2d(input,weights)
    rs=hwc2chw(conv[0]) 
    init=tf.global_variables_initializer()
    sess=tf.Session()
    sess.run(init)
    conv_val = sess.run(rs)
    print(conv_val[0]) 
if __name__=='__main__':
    main()

上面代码有几个地方需要提一下,

由于输出通道为1,因此可以对卷积核数据转换的时候直接调用chw2hwc,如果输入通道不为1,则不能这样完成转换。

输入完成chw转hwc后,记得在第0维扩充维数,因为卷积要求输入为[n,h,w,c]

为了方便我们查看结果,记得将hwc的shape转为chw

执行上面代码,运行结果如下:

[[ 2.  0.  2.  4.  0.]
 [ 1.  4.  4.  3.  5.]
 [ 4.  3.  5.  9. -1.]
 [ 3.  4.  6.  2.  1.]
 [ 5.  3.  5.  1. -2.]]

这个计算结果是怎么计算出来的?为了让大家更清晰的学习其中细节,我特地制作了一个GIF图,看完这个图后,如果你还看不懂卷积的计算过程,你可以来打我。。。。

2 手写Python代码实现卷积

自己实现卷积时,就无须将定义的数据[c,h,w]转为[h,w,c]了。

import numpy as np
input_data=[
              [[1,0,1,2,1],
               [0,2,1,0,1],
               [1,1,0,2,0],
               [2,2,1,1,0],
               [2,0,1,2,0]],
               [[2,0,2,1,1],
                [0,1,0,0,2],
                [1,0,0,2,1],
                [1,1,2,1,0],
                [1,0,1,1,1]] 
            ]
weights_data=[ 
               [[ 1, 0, 1],
                [-1, 1, 0],
                [ 0,-1, 0]],
               [[-1, 0, 1],
                [ 0, 0, 1],
                [ 1, 1, 1]] 
           ]
#fm:[h,w]
#kernel:[k,k]
#return rs:[h,w] 
def compute_conv(fm,kernel):
    [h,w]=fm.shape
    [k,_]=kernel.shape 
    r=int(k/2)
    #定义边界填充0后的map
    padding_fm=np.zeros([h+2,w+2],np.float32)
    #保存计算结果
    rs=np.zeros([h,w],np.float32)
    #将输入在指定该区域赋值,即除了4个边界后,剩下的区域
    padding_fm[1:h+1,1:w+1]=fm 
    #对每个点为中心的区域遍历
    for i in range(1,h+1):
        for j in range(1,w+1): 
            #取出当前点为中心的k*k区域
            roi=padding_fm[i-r:i+r+1,j-r:j+r+1]
            #计算当前点的卷积,对k*k个点点乘后求和
            rs[i-1][j-1]=np.sum(roi*kernel)
    return rs
def my_conv2d(input,weights):
    [c,h,w]=input.shape
    [_,k,_]=weights.shape
    outputs=np.zeros([h,w],np.float32)
    #对每个feature map遍历,从而对每个feature map进行卷积
    for i in range(c):
        #feature map==>[h,w]
        f_map=input[i]
        #kernel ==>[k,k]
        w=weights[i]
        rs =compute_conv(f_map,w)
        outputs=outputs+rs   
    return outputs
def main():  
    #shape=[c,h,w]
    input = np.asarray(input_data,np.float32)
    #shape=[in_c,k,k]
    weights =  np.asarray(weights_data,np.float32) 
    rs=my_conv2d(input,weights) 
    print(rs) 
if __name__=='__main__':
    main() 

代码无须太多解释,直接看注释。然后跑出来的结果如下:

[[ 2.  0.  2.  4.  0.]
 [ 1.  4.  4.  3.  5.]
 [ 4.  3.  5.  9. -1.]
 [ 3.  4.  6.  2.  1.]
 [ 5.  3.  5.  1. -2.]]

对比发现,跟Tensorflow的卷积结果是一样的。

3 小结

本文中,我们学习了Tensorflow的卷积实现原理,通过也通过python代码实现了输出通道为1的卷积,其实输出通道数不影响我们学习卷积原理。后面如果有机会的话,我们去实现一个更加健全,完整的卷积。

相关文章
|
5天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
8天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
4天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
12 1
|
9天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
5天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
9天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
22 5
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
17 2
|
9天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
26 4
|
11天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
9天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
20 2