FPGA硬件工程师Verilog面试题(五)

简介: FPGA硬件工程师Verilog面试题(五)

88a749c7dd364bd49d099f36597095b0.png


习题一:输入序列连续的序列检测



描述


  • 请编写一个序列检测模块,检测输入信号a是否满足01110001序列,当信号满足该序列,给出指示信号match。

模块的接口信号图如下:


e9d7e3813f9e482b83e726947f5fa08c.png


模块的时序图如下:


51a5c1aef05c4fdf9878268bcac8b80e.png


  • 请使用Verilog HDL实现以上功能,并编写testbench验证模块的功能


输入描述


  • clk:系统时钟信号
  • rst_n:异步复位信号,低电平有效
  • a:单比特信号,待检测的数据


输出描述


  • match:当输入信号a满足目标序列,该信号为1,其余时刻该信号为0


代码实现

`timescale 1ns/1ns
module sequence_detect(
  input clk,
  input rst_n,
  input a,
  output reg match
  );
  reg [7:0] a_tem;
  always @(posedge clk or negedge rst_n)
    if (!rst_n)
      begin 
        match <= 1'b0;
      end
    else if (a_tem == 8'b0111_0001)
      begin
        match <= 1'b1;
      end
    else 
      begin 
        match <= 1'b0;
      end
  always @(posedge clk or negedge rst_n)
    if (!rst_n)
      begin 
        a_tem <= 8'b0;
      end
    else 
      begin
        a_tem <= {a_tem[6:0],a};
      end
endmodule

习题二:含有无关项的序列检测



描述


请编写一个序列检测模块,检测输入信号a是否满足011XXX110序列(长度为9位数据,前三位是011,后三位是110,中间三位不做要求),当信号满足该序列,给出指示信号match。


程序的接口信号图如下:



4dcfd754dce84e65b0f038eb9a80f87c.png

程序的功能时序图如下:



1b6abedadceb45a4bda1b9cee276029a.png

  • 请使用Verilog HDL实现以上功能,并编写testbench验证模块的功能。 要求代码简洁,功能完整。


输入描述


  • clk:系统时钟信号
  • rst_n:异步复位信号,低电平有效
  • a:单比特信号,待检测的数据


输出描述


  • match:当输入信号a满足目标序列,该信号为1,其余时刻该信号为0


代码实现

`timescale 1ns/1ns
module sequence_detect(
  input clk,
  input rst_n,
  input a,
  output match
  );
  reg [8:0] a_tem;
  reg match_f;
  reg match_b;
  always @(posedge clk or negedge rst_n)
    if (!rst_n)
      begin 
        match_f <= 1'b0;
      end
    else if (a_tem[8:6] == 3'b011)
      begin
        match_f <= 1'b1;
      end
    else 
      begin 
        match_f <= 1'b0;
      end
  always @(posedge clk or negedge rst_n)
    if (!rst_n)
      begin 
        match_b <= 1'b0;
      end
    else if (a_tem[2:0] == 3'b110)
      begin
        match_b <= 1'b1;
      end
    else 
      begin 
        match_b <= 1'b0;
      end
  always @(posedge clk or negedge rst_n)
    if (!rst_n)
      begin 
        a_tem <= 9'b0;
      end
    else 
      begin
        a_tem <= {a_tem[7:0],a};
      end
  assign match = match_b && match_f;
endmodule


习题三:不重叠序列检测



描述


请编写一个序列检测模块,检测输入信号(a)是否满足011100序列, 要求以每六个输入为一组,不检测重复序列,例如第一位数据不符合,则不考虑后五位。一直到第七位数据即下一组信号的第一位开始检测。当信号满足该序列,给出指示信号match。当不满足时给出指示信号not_match。


模块的接口信号图如下:


ad7237a8d7684a8a91bd98332f37ec48.png


模块的时序图如下:


95ff4e6c288c4aa8a2bfb0882a5a58ad.png


请使用Verilog HDL实现以上功能,要求使用状态机实现,画出状态转化图。并编写testbench验证模块的功能。


输入描述

  • clk:系统时钟信号
  • rst_n:异步复位信号,低电平有效
  • a:单比特信号,待检测的数据

输出描述

  • match:当输入信号a满足目标序列,该信号为1,其余时刻该信号为0
  • not_match:当输入信号a不满足目标序列,该信号为1,其余时刻该信号为0

代码实现

`timescale 1ns/1ns
module sequence_detect(
  input clk,
  input rst_n,
  input data,
  output reg match,
  output reg not_match
  );
    parameter ZERO=0, ONE=1, TWO=2, THREE=3, FOUR=4, FIVE=5, SIX=6, FAIL=7;
    reg [2:0] state, nstate;
    reg [2:0] cnt;
    always@(posedge clk or negedge rst_n) begin
        if(~rst_n)
            cnt <= 0;
        else
            cnt <= cnt==6? 1: cnt+1; 
    end
    always@(posedge clk or negedge rst_n) begin
        if(~rst_n)
            state <= ZERO;
        else
            state <= nstate;
    end
    always@(*) begin
        if(~rst_n)
            nstate = ZERO;
        else
            case(state)
                ZERO : nstate = data? FAIL : ONE;
                ONE  : nstate = data? TWO  : FAIL;
                TWO  : nstate = data? THREE: FAIL;
                THREE: nstate = data? FOUR : FAIL;
                FOUR : nstate = data? FAIL : FIVE;
                FIVE : nstate = data? FAIL : SIX;
                SIX  : nstate = data? FAIL : ONE;
                FAIL : nstate = cnt==6&&data==0? ONE: FAIL;
                default: nstate = ZERO;
            endcase
    end
    always@(*) begin
        if(~rst_n) begin
            match     = 0;
            not_match = 0;
        end
        else begin
            match     = cnt==6&&state==SIX;
            not_match = cnt==6&&state==FAIL;
        end
    end
endmodule

习题四:输入序列不连续的序列检测



描述


请编写一个序列检测模块,输入信号端口为data,表示数据有效的指示信号端口为data_valid。当data_valid信号为高时,表示此刻的输入信号data有效,参与序列检测;当data_valid为低时,data无效,抛弃该时刻的输入。当输入序列的有效信号满足0110时,拉高序列匹配信号match。


模块的接口信号图如下:

9c5a3978b18f4e728215da83217e05f5.png• 模块的时序图如下:


12792bd9654c4817ba56ba8687474050.png


请使用状态机实现以上功能,画出状态转移图并使用Verilog HDL编写代码实现以上功能,并编写testbench验证模块的功能.


输入描述


clk:系统时钟信号

rst_n:异步复位信号,低电平有效

data:单比特信号,待检测的数据

data_valid:输入信号有效标志,当该信号为1时,表示输入信号有效


输出描述


  • match:当输入信号data满足目标序列,该信号为1,其余时刻该信号为0


代码实现


`timescale 1ns/1ns
module sequence_detect(
  input clk,
  input rst_n,
  input data,
  input data_valid,
  output reg match
  );
    reg [3:0] data_r;
    always@(posedge clk or negedge rst_n) begin
        if(~rst_n)
            data_r <= 4'b0;
        else
            data_r <= data_valid? {data_r[2:0], data}: data_r;
    end
    always@(posedge clk or negedge rst_n) begin
        if(~rst_n)
            match <= 0;
        else
            match <= data_r[2:0]==3'b011 && data==1'b0 && data_valid;
    end
//  always@(posedge clk or negedge rst_n) begin
//     if(~rst_n)
//         match <= 0;
//     else
//         match <= data_r==4'b0110;
//  end
endmodule
相关文章
|
8月前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的1024QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的1024QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同SNR条件下的性能测试。1024QAM调制将10比特映射到复平面上的1024个星座点之一,实现高效数据传输。硬件测试结果表明,在SNR=32dB和40dB时,系统表现出良好的性能。Verilog核心程序展示了各模块的连接与功能实现。
208 7
|
9月前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
7月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench
本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。
|
7月前
|
数据采集 移动开发 算法
【硬件测试】基于FPGA的QPSK调制+软解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现QPSK调制与软解调系统,包含Testbench、高斯信道、误码率统计模块,并支持不同SNR设置。硬件版本新增ILA在线数据采集和VIO在线SNR设置功能,提供无水印完整代码及测试结果。通过VIO分别设置SNR为6dB和12dB,验证系统性能。配套操作视频便于用户快速上手。 理论部分详细解析QPSK调制原理及其软解调实现过程,涵盖信号采样、相位估计、判决与解调等关键步骤。软解调通过概率估计(如最大似然法)提高抗噪能力,核心公式为*d = d_hat / P(d_hat|r[n])*,需考虑噪声对信号点分布的影响。 附Verilog核心程序代码及注释,助力理解与开发。
245 5
|
7月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的2ASK+帧同步系统开发与硬件片内测试,包含高斯信道,误码统计,可设置SNR
本文分享了基于FPGA的2ASK+帧同步系统硬件测试版本,包含ILA数据采集、VIO SNR设置及数据源模块。通过调整SNR(如45dB和10dB),实现对调制解调性能的验证。2ASK调制将数字信号转为二进制码,通过载波振幅变化传输;帧同步用于确定帧起始位置,确保数据正确解调。附带操作视频与核心Verilog代码,便于理解和复现。
235 9
|
8月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的MSK调制解调系统系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现MSK调制解调系统,采用Verilog开发,包含同步模块、高斯信道模拟、误码率统计等功能。相比仿真版本,新增ILA数据采集与VIO在线SNR设置模块。通过硬件测试验证,展示不同SNR(如10dB和16dB)下的性能表现。研究聚焦软件无线电领域,优化算法复杂度以适应硬件限制,利用MSK恒定包络、相位连续等特性提升频谱效率。核心代码实现信号生成、调制解调、滤波及误码统计,提供完整的硬件设计与分析方案。
285 19
|
8月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
本内容展示了基于Vivado2019.2的算法仿真效果,包括设置不同信噪比(SNR=8db和20db)下的结果及整体波形。同时,详细介绍了2ASK调制解调技术的原理与实现,即通过改变载波振幅传输二进制信号,并提供数学公式支持。此外,还涉及帧同步理论,用于确定数据帧起始位置。最后,给出了Verilog核心程序代码,实现了2ASK解调与帧同步功能,结合DDS模块生成载波信号,完成信号处理流程。
163 0
|
8月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的4ASK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的4ASK调制解调系统的硬件测试版本,该系统包括testbench、高斯信道模块和误码率统计模块,并新增了ILA在线数据采集和VIO在线SNR设置功能。通过VIO设置不同SNR(如15dB和25dB),实现了对系统性能的实时监测与调整。4ASK是一种通过改变载波幅度表示数据的数字调制方式,适用于多种通信场景。FPGA平台的高效性和灵活性使其成为构建高性能通信系统的理想选择。
215 17
|
8月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的16QAM调制+软解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于之前开发的16QAM调制与软解调系统,增加了硬件测试功能。该系统包含FPGA实现的16QAM调制、软解调、高斯信道、误码率统计模块,并新增了ILA在线数据采集和VIO在线SNR设置模块。通过硬件测试,验证了不同SNR条件下的系统性能。16QAM软解调通过比较接收信号采样值与16个调制点的距离,选择最近的调制点来恢复原始数据。核心Verilog代码实现了整个系统的功能,包括SNR设置、信号处理及误码率统计。硬件测试结果表明系统在不同SNR下表现良好,详细操作步骤可参考配套视频。
229 13
|
8月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的4FSK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于之前的文章《基于FPGA的4FSK调制解调系统》,增加了ILA在线数据采集模块和VIO在线SNR设置模块,实现了硬件测试版本。通过VIO设置不同SNR(如10dB和20dB),并展示了ILA采集的数据结果。四频移键控(4FSK)是一种数字调制方法,利用四个不同频率传输二进制数据,具有较高的频带利用率和抗干扰性能。输入的二进制数据分为两组,每组两个比特,对应四个频率f1、f2、f3、f4,分别代表二进制组合00、01、10、11。调制过程中选择相应频率输出,并进行幅度调制以增强抗干扰能力。接收端通过带通滤波器提取信号并还原为原始二进制数据。
212 7

热门文章

最新文章

下一篇
oss云网关配置