《MySQL高级篇》二、逻辑架构分析(三)

本文涉及的产品
云数据库 RDS MySQL,集群版 2核4GB 100GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用版 2核4GB 50GB
简介: 《MySQL高级篇》二、逻辑架构分析

2.4 SQL语法顺序


随着 MySQL 版本的更新换代,其优化器也在不断的升级,优化器会分析不同执行顺序产生的性能消耗不同而动态调整执行顺序。

需求:查询每个部门年龄高于 20 岁的人数且高于 20 岁人数不能少于 2 人,显示人数最多的第一名部门信息。

下面是经常出现的查询顺序:

d6fe7bf50fbb2523a6547fec2943123a.png

2.5 Oracle中的SQL执行流程(了解)

Oracle中采用了共享池来判断SQL语句是否存在缓存和执行计划,通过这一步骤我们可以知道应该采用硬解析还是软解析。

我们先来看下SQL在Oracle中的执行过程:


fb479f33352762b519e38a16edc17021.png

从上面这张图中可以看出, SQL语句在Oracle中经历了以下的几个步骤。


语法检查:检查SQL拼写是否正确,如果不正确,Oracle 会报语法错误。

语义检查:检查SQL中的访问对象是否存在。比如我们在写SELECT语句的时候,列名写错了,系统就会提示错误。语法检查和语义检查的作用是保证SQL语句没有错误。

权限检查:看用户是否具备访问该数据的权限。

Oracle通过检查共享池是否存在SQL语句的执行计划,来判断进行软解析,还是硬解析。那软解析和硬解析又该怎么理解呢?


在共享池中,Oracle 首先对SQL语句进行Hash运算,然后根据Hash值在库缓存(Library Cache)中查找,如果存在SQL语句的执行计划,就直接拿来执行,直接进入“执行器”的环节,这就是软解析。


如果没有找到SQL语句和执行计划,Oracle 就需要创建解析树进行解析,生成执行计划,进入“优化器”这个步骤,这就是硬解析。


优化器:优化器中就是要进行硬解析,也就是决定怎么做,比如创建解析树,生成执行计划。

执行器:当有了解析树和执行计划之后,就知道了SQL该怎么被执行,这样就可以在执行器中执行语句了。

共享池是Oracle中的术语,包括了库缓存,数据字典缓冲区等。我们_上面已经讲到了库缓存区,它主要缓存SQL语句和执行计划。而数据字典缓冲区存储的是Oracle中的对象定义,比如表、视图、索引等对象。当对SQL语句进行解析的时候,如果需要相关的数据,会从数据字典缓冲区中提取。


库缓存这一个步骤,决定了SQL语句是否需要进行硬解析。为了提升SQL的执行效率,我们应该尽量避免硬解析,因为在SQL的执行过程中,创建解析树,生成执行计划是很消耗资源的。


你可能会问,如何避免硬解析,尽量使用软解析呢?在Oracle中,绑定变量是它的一大特色。绑定变量就是在SQL语句中使用变量,通过不同的变量取值来改变SQL的执行结果。这样做的好处是能提升软解析的可能性,不足之处在于可能会导致生成的执行计划不够优化,因此是否需要绑定变量还需要视情况而定。


举个例子,我们可以使用下面的查询语句:

SQL> select * from player where player_id = 10001;


你也可以使用绑定变量,如:

SOL> select * from plaver where plaver id = :plaver_id:


这两个查询语句的效率在Oracle中是完全不同的。如果你在查询player. _id= 10001之后,还会查询10002、10003之类的数据,那么每- -次查询都会创建一 个新的查询解析。 而第二种方式使用了绑定变量,那么在第一-次查询之后,在共享池中就会存在这类查询的执行计划,也就是软解析。


因此,我们可以通过使用绑定变量来减少硬解析,减少Oracle的解析工作量。但是这种方式也有缺点,使用动态SQL的方式,因为参数不同,会导致SQL的执行效率不同,同时SQL优化也会比较困难。


Oracle的架构图:


460d54d88bd46b64d62a351394ce6ac6.png

9f03aaaf09b0af7c36fbc562126683cb.png

3. 数据库缓冲池(buffer pool)


InnoDB存储引擎是以页为单位来管理存储空间的,我们进行的增删改查操作其实本质上都是在访问页 面(包括读页面、写页面、创建新页面等操作)。而磁盘 I/O 需要消耗的时间很多,而在内存中进行操 作,效率则会高很多,为了能让数据表或者索引中的数据随时被我们所用,DBMS 会申请占用内存来作为数据缓冲池,在真正访问页面之前,需要把在磁盘上的页缓存到内存中的Buffer Pool之后才可以访 问。


这样做的好处是可以让磁盘活动最小化,从而减少与磁盘直接进行 I/O 的时间 。要知道,这种策略对提 升 SQL 语句的查询性能来说至关重要。如果索引的数据在缓冲池里,那么访问的成本就会降低很多。


3.1 缓冲池 vs 查询缓存

缓冲池和查询缓存是一个东西吗?不是。

3.1.1 缓冲池(Buffer Pool)


首先我们需要了解在 InnoDB 存储引擎中,缓冲池都包括了哪些。


在 InnoDB 存储引擎中有一部分数据会放到内存中,缓冲池则占了这部分内存的大部分,它用来存储各种数据的缓存,如下图所示:


f56f3d290780d74dbcba228753b0c661.png


从图中,你能看到InnoDB缓冲池包括了数据页、索引页、插入缓冲、锁信息、自适应Hash和数据字典信息等。


缓存池的重要性:


对于使用InnoDB作为存储引擎的表来说,不管是用于存储用户数据的索引(包括聚簇索引和二级索引),还是各种系统数据,都是以页的形式存放在表空间中的,而所谓的表空间只不过是InnoDB对文件系统上一个或几个实际文件的抽象,也就是说我们的数据说到底还是存储在磁盘上的。但是各位也都知道,磁盘的速度慢的跟乌龟一样,怎么能配得上“快如风,疾如电”的CPU呢?这里,缓冲池可以帮助我们消除CPU和磁盘之间的鸿沟。所以InnoDB存储弓|擎在处理客户端的请求时,当需要访问某个页的数据时,就会把完整的页的数据全部加载到内存中,也就是说即使我们只需要访问一个页的一条记录,那也需要先把整个页的数据加载到内存中。将整个页加载到内存中后就可以进行读写访问了,在进行完读写访问之后并不着急把该页对应的内存空间释放掉,而是将其缓存起来,这样将来有请求再次访问该页面时,就可以省去磁盘I0的开销了。


缓存原则:


“位置 * 频次 ”这个原则,可以帮我们对 I/O 访问效率进行优化。 首先,位置决定效率,提供缓冲池就是为了在内存中可以直接访问数据。


其次,频次决定优先级顺序。因为缓冲池的大小是有限的,比如磁盘有 200G,但是内存只有 16G,缓冲池大小只有 1G,就无法将所有数据都加载到缓冲池里,这时就涉及到优先级顺序,会 优先对使用频次高的热数据进行加载。


缓冲池的预读特性:


一个缓存了解了缓冲池的作用之后,我们还需要了解缓冲池的另一个特性: 预读。


缓冲池的作用就是提升I/0效率,而我们进行读取数据的时候存在一个“局部性原理”, 也就是说我使用了一些数据,大概率还会使用它周围的一些数据,因此采用“预读”的机制提前加载,可以减少未来可能的磁盘1/O操作。


3.1.2 查询缓存


那么什么是查询缓存呢?


查询缓存是提前把 查询结果缓存 起来,这样下次不需要执行就可以直接拿到结果。需要说明的是,在 MySQL 中的查询缓存,不是缓存查询计划,而是查询对应的结果。因为命中条件苛刻,而且只要数据表发生变化,查询缓存就会失效,因此命中率低。


3.2 缓冲池如何读取数据


缓冲池管理器会尽量将经常使用的数据保存起来,在数据库进行页面读操作的时候,首先会判断该页面是否在缓冲池中,如果存在就直接读取,如果不存在,就会通过内存或磁盘将页面存放到缓冲池中再进行读取。

缓存在数据库中的结构和作用如下图所示:


3b4a2624b0d515c0ed64dcf463dc13b5.png


如果我们执行SQL语句的时候更新了缓存池中的数据,那么这些数据会马上同步到磁盘上吗?


实际上,当我们对数据库中的记录进行修改的时候,首先会修改缓冲池中页里面的记录信息,然后数据库会以一定的频率刷新到磁盘上。注意并不是每次发生更新操作,都会立刻进行磁盘回写。缓冲池会采用一种叫做checkpoint的机制将数据回写到磁盘上,这样做的好处就是提升了数据库的整体性能。


比如,当缓冲池不够用时,需要释放掉一些不常用的页,此时就可以强行采用checkpoint的方式,将不常用的脏页回写到磁盘上,然后再从缓冲池中将这些页释放掉。这里脏页(dirty page)指的是缓冲池中被修改过的页,与磁盘上的数据页不一致。


3.3 查看/设置缓冲池的大小


如果你使用的是MySQL MyISAM存储引擎,它只缓存索引, 不缓存数据,对应的键缓存参数

key_buffer_size,你可以用它进行查看。


如果你使用的是InnoDB存储引擎,可以通过查看 innodb_buffer_pool_size 变量来查看缓冲池的大 小。命令如下:


show variables like 'innodb_buffer_pool_size';

543bcd5bf46f8511a997bffe64449707.png


你能看到此时 InnoDB 的缓冲池大小只有 134217728/1024/1024=128MB。我们可以修改缓冲池大小,比如 改为256MB,方法如下:

set global innodb_buffer_pool_size = 268435456;

00a6208b579c555e0770a44e3b62b8bb.png


或者:

[server]
innodb_buffer_pool_size = 268435456

然后再来看下修改后的缓冲池大小,此时已成功修改成了 256 MB:

1bccc7cea3c5f6b30e4584b90aef6b90.png


3.4 多个Buffer Pool实例


Buffer Pool本质是InnoDB向操作系统申请的一块连续的内存空间,在多线程环境下,访问Buffer Pool中的数据都需要加锁处理。在Buffer Pool特别大而且多线程并发访问特别高的情况下,单一的Buffer Pool可能会影响请求的处理速度。所以在Buffer Pool特别大的时候,我们可以把它们拆分成若干个小的Buffer Pool ,每个Buffer Pool都称为一个实例,它们都是独立的,独立的去申请内存空间,独立的管理各种链表。所以在多线程并发访问时并不会相互影响,从而提高并发处理能力。


我们可以在服务器启动的时候通过设置innodb_buffer_pool_instances 的值来修改Buffer Pool实例的个数,


比方说这样:

[server]
innodb_buffer_pool_instances = 2

这样就表明我们要创建2个 Buffer Pool 实例。

我们看下如何查看缓冲池的个数,使用命令:

show variables like 'innodb_buffer_pool_instances';

9d20793c65924e7f46c3ab69cf082918.png


那每个 Buffer Pool 实例实际占多少内存空间呢?其实使用这个公式算出来的:innodb_buffer_pool_size/innodb_buffer_pool_instances


也就是总共的大小除以实例的个数,结果就是每个Buffer Pool 实例占用的大小。


不过也不是说Buffer Pool实例创建的越多越好,分别管理各个Buffer Pool也是需要性能开销的,InnoDB规定:当innodb_buffer_pool_size的值小于1G的时候设置多个实例是无效的,InnoDB会默认把innodb_ buffe _pool_instances 的值修改为1。而我们鼓励在Buffer Ppol大于或等于1G的时候设置多个Buffer Pool实例。


3.5 引申问题

Buffer Pool 是 MySQL 内存结构中十分核心的一个组成,你可以先把它想象成一个黑盒子。

黑盒下的更新数据流程

当我们查询数据的时候,会先去Buffer Pool中查询。如果Buffer Pool中不存在,存储弓|擎会先将数据从磁盘加载到Buffer Pool中,然后将数据返回给客户端;同理,当我们更新某个数据的时候,如果这个数据不存在于Buffer Pool,同样会先数据加载进来,然后修改修改内存的数据。被修改过的数据会在之后统一刷入磁盘。

397188606af241e16c62c5c18a45875c.png



这个过程看似没啥问题,实则是有问题的。假设我们修改Buffer Pool中的数据成功,但是还没来得及将数据刷入磁盘MySQL就挂了怎么办?按照上图的逻辑,此时更新之后的数据只存在于Buffer Pool中,如果此时MySQL宕机了,这部分数据将会永久地丢失;


我更新到一半突然发生错误了,想要回滚到更新之前的版本,该怎么办?连数据持久化的保证、事务回滚都做不到还谈什么崩溃恢复?


答案:Redo Log & Undo Log

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
27天前
|
存储 关系型数据库 MySQL
MySQL数据库进阶第六篇(InnoDB引擎架构,事务原理,MVCC)
MySQL数据库进阶第六篇(InnoDB引擎架构,事务原理,MVCC)
|
19天前
|
存储 关系型数据库 MySQL
架构面试题汇总:mysql索引汇总(2024版)
架构面试题汇总:mysql索引汇总(2024版)
|
19天前
|
存储 数据采集 分布式计算
Java中的大数据处理与分析架构
Java中的大数据处理与分析架构
|
21天前
|
SQL 关系型数据库 MySQL
MySQL高可用架构设计:从主从复制到分布式集群
MySQL高可用性涉及主从复制、半同步复制和Group/InnoDB Cluster。主从复制通过二进制日志同步数据,保证故障时可切换。半同步复制确保事务在至少一个从服务器确认后才提交。Group Replication是多主复制,支持自动故障切换。InnoDB Cluster是8.0的集成解决方案,简化集群管理。使用这些技术能提升数据库的稳定性和可靠性。
217 2
|
3天前
|
前端开发 Linux Shell
技术心得:基于AR9331(MIPS架构)分析系统启动过程(uboot)
技术心得:基于AR9331(MIPS架构)分析系统启动过程(uboot)
|
26天前
|
存储 缓存 监控
MySQL 8.0中查询缓存的废弃与原因分析
MySQL 8.0中查询缓存的废弃与原因分析
39 1
|
1月前
|
SQL 关系型数据库 MySQL
MySQL数据库基础练习系列8、成绩录入与分析系统
MySQL数据库基础练习系列8、成绩录入与分析系统
14 1
|
1月前
|
存储 算法 关系型数据库
【MySQL技术内幕】2.3-InnoDB体系架构
【MySQL技术内幕】2.3-InnoDB体系架构
22 1
|
16天前
|
关系型数据库 MySQL 测试技术
《阿里云产品四月刊》—瑶池数据库微课堂|RDS MySQL 经济版 vs 自建 MySQL 性能压测与性价比分析
阿里云瑶池数据库云原生化和一体化产品能力升级,多款产品更新迭代
|
18天前
|
存储 关系型数据库 MySQL
架构面试题汇总:40道题吃透mysql(2024版)
架构面试题汇总:40道题吃透mysql(2024版)