大家好,我是君哥。今天来聊一聊 RocketMQ 客户端消息消费失败,怎么办?
下面是 RocketMQ 推模式的一段代码:
public static void main(String[] args) throws InterruptedException, MQClientException { Tracer tracer = initTracer(); DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("CID_JODIE_1"); consumer.getDefaultMQPushConsumerImpl().registerConsumeMessageHook(new ConsumeMessageOpenTracingHookImpl(tracer)); consumer.subscribe("TopicTest", "*"); consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET); consumer.setConsumeTimestamp("20181109221800"); consumer.registerMessageListener(new MessageListenerConcurrently() { @Override public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) { try{ System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs); }catch (Exception e){ return ConsumeConcurrentlyStatus.RECONSUME_LATER; } return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; } }); consumer.start(); }
从这段代码可以看出,消费者消费消息后会返回一个消费状态,那消费状态有哪些呢?参见类 ConsumeConcurrentlyStatus 中定义:
- 消费成功,返回 CONSUME_SUCCESS;
- 消费失败,返回 RECONSUME_LATER。
下面代码就是返回上面两个状态的逻辑,对于消费状态,如果返回 null,会给它赋值 RECONSUME_LATER,处理逻辑如下:
//ConsumeRequest 类 public void run() { MessageListenerConcurrently listener = ConsumeMessageConcurrentlyService.this.messageListener; //省略部分逻辑 long beginTimestamp = System.currentTimeMillis(); ConsumeReturnType returnType = ConsumeReturnType.SUCCESS; try { //省略部分逻辑 status = listener.consumeMessage(Collections.unmodifiableList(msgs), context); } catch (Throwable e) {} //省略部分逻辑 if (null == status) { //省略日志 status = ConsumeConcurrentlyStatus.RECONSUME_LATER; } //省略部分逻辑 if (!processQueue.isDropped()) { ConsumeMessageConcurrentlyService.this.processConsumeResult(status, context, this); } else {} }
这部分代码的 UML 类图如下:
上面代码中的 processConsumeResult 方法就是消费失败后客户端的处理逻辑:
public void processConsumeResult( final ConsumeConcurrentlyStatus status, final ConsumeConcurrentlyContext context, final ConsumeRequest consumeRequest ) { //ackIndex 初始值是 Integer.MAX_VALUE; int ackIndex = context.getAckIndex(); switch (status) { case CONSUME_SUCCESS: if (ackIndex >= consumeRequest.getMsgs().size()) { ackIndex = consumeRequest.getMsgs().size() - 1; } //省略部分逻辑 break; case RECONSUME_LATER: ackIndex = -1; //省略部分逻辑 break; default: break; } switch (this.defaultMQPushConsumer.getMessageModel()) { case BROADCASTING: //广播模式下这里只打印日志 break; case CLUSTERING: List<MessageExt> msgBackFailed = new ArrayList<MessageExt>(consumeRequest.getMsgs().size()); for (int i = ackIndex + 1; i < consumeRequest.getMsgs().size(); i++) { MessageExt msg = consumeRequest.getMsgs().get(i); boolean result = this.sendMessageBack(msg, context); if (!result) { msg.setReconsumeTimes(msg.getReconsumeTimes() + 1); msgBackFailed.add(msg); } } if (!msgBackFailed.isEmpty()) { consumeRequest.getMsgs().removeAll(msgBackFailed); //发送回 Broker 失败的消息,5s 后再次消费 this.submitConsumeRequestLater(msgBackFailed, consumeRequest.getProcessQueue(), consumeRequest.getMessageQueue()); } break; default: break; } //更新本地保存的偏移量 long offset = consumeRequest.getProcessQueue().removeMessage(consumeRequest.getMsgs()); if (offset >= 0 && !consumeRequest.getProcessQueue().isDropped()) { this.defaultMQPushConsumerImpl.getOffsetStore().updateOffset(consumeRequest.getMessageQueue(), offset, true); } }
1 消费成功
上面的代码逻辑中,如果消费成功,ackIndex 变量的值就是消息数量减 1,所以上面的 switch 逻辑是不会执行的,因为广播模式下,只是打印一段日志(没有其他逻辑),而集群模式下,for 循环的起始 i 变量已经等于消息数量,循环里面的代码不会执行。
因此,如果消息消费成功,只会走最下面的逻辑,更新本地保存的消息偏移量。
2 消费失败
ackIndex 变量值等于 -1。
2.1 广播模式
在消费失败的情况下,广播模式的代码只是打印了一段日志,之后更新了本地保存的消息偏移量,因此我们知道广播模式消息消费失败后就不会重新消费了,相当于丢弃了消息。
2.2 集群模式
从上面代码的 for 循环中,会把所有的消息都发送回 Broker,这样这批消息还能再次被拉取到进行消费。
对于发送给 Broker 失败的消息,会延迟 5s 后再次消费。代码如下:
private void submitConsumeRequestLater( final List<MessageExt> msgs, final ProcessQueue processQueue, final MessageQueue messageQueue ) { this.scheduledExecutorService.schedule(new Runnable() { @Override public void run() { ConsumeMessageConcurrentlyService.this.submitConsumeRequest(msgs, processQueue, messageQueue, true); } }, 5000, TimeUnit.MILLISECONDS); }
更新本地保存的消息偏移量时,会从消息列表中把发送回 Broker 失败的消息先删除掉。
注意:从上面逻辑可以看到,在拉取到一批消息进行消费时,只要有一条消息消费失败,这批消息都会进行重试,因此消费端做好幂等是必要的。
下面再看一下发送失败消息给 Broker 的代码,发送消息是,请求的 code 码是 CONSUMER_SEND_MSG_BACK。根据这个请求码就能找 Broker 端的处理逻辑。
如果发送回 Broker 时抛出异常,需要重新发送一个新的消息,这里有四点需要注意:
- 新消息的 Topic 变成【 %RETRY% + consumerGroup】;
- 新消息的 RETRY_TOPIC 这个属性赋值为之前的 Topic;
- 新消息的重试次数属性加 1;
- 新消息的 DELAY 属性等于重试次数 + 3.
public void sendMessageBack(MessageExt msg, int delayLevel, final String brokerName) throws RemotingException, MQBrokerException, InterruptedException, MQClientException { try { this.mQClientFactory.getMQClientAPIImpl().consumerSendMessageBack(brokerAddr, msg, this.defaultMQPushConsumer.getConsumerGroup(), delayLevel, 5000, getMaxReconsumeTimes()); } catch (Exception e) { //Topic 变成 %RETRY% + consumerGroup Message newMsg = new Message(MixAll.getRetryTopic(this.defaultMQPushConsumer.getConsumerGroup()), msg.getBody()); String originMsgId = MessageAccessor.getOriginMessageId(msg); MessageAccessor.setOriginMessageId(newMsg, UtilAll.isBlank(originMsgId) ? msg.getMsgId() : originMsgId); //RETRY_TOPIC 赋值 MessageAccessor.putProperty(newMsg, MessageConst.PROPERTY_RETRY_TOPIC, msg.getTopic()); //重试次数+1 MessageAccessor.setReconsumeTime(newMsg, String.valueOf(msg.getReconsumeTimes() + 1)); //最大重试次数 MessageAccessor.setMaxReconsumeTimes(newMsg, String.valueOf(getMaxReconsumeTimes())); //DELAY = 重试次数 + 3 newMsg.setDelayTimeLevel(3 + msg.getReconsumeTimes()); this.mQClientFactory.getDefaultMQProducer().send(newMsg); } finally { msg.setTopic(NamespaceUtil.withoutNamespace(msg.getTopic(), this.defaultMQPushConsumer.getNamespace())); } }
2.3 Broker 处理
上面已经讲过,对于处理失败的消息,消费端会发送回 Broker,不过这里有一点需要注意,发送回 Broker 时,消息的 Topic 变成【"%RETRY%" + namespace + "%" + 原始 topic】,封装逻辑在源码 ClientConfig.withNamespace。
根据请求码 CONSUMER_SEND_MSG_BACK 可以定位到 Broker 的处理逻辑在类 SendMessageProcessor,方法 asyncConsumerSendMsgBack。
2.3.1 进死信队列
如果重试次数超过了最大重试次数(默认 16 次),或者 delayLevel 值小于0,则消息进死信队列,死信队列的 Topic 为【"%DLQ%" + 消费组】,代码如下:
//asyncConsumerSendMsgBack 方法 if (msgExt.getReconsumeTimes() >= maxReconsumeTimes || delayLevel < 0) { newTopic = MixAll.getDLQTopic(requestHeader.getGroup()); queueIdInt = ThreadLocalRandom.current().nextInt(99999999) % DLQ_NUMS_PER_GROUP; topicConfig = this.brokerController.getTopicConfigManager().createTopicInSendMessageBackMethod(newTopic, DLQ_NUMS_PER_GROUP, PermName.PERM_WRITE | PermName.PERM_READ, 0); msgExt.setDelayTimeLevel(0); }
2.3.2 发送 CommitLog
如果延迟级别(DELAY)等于 0,则延迟级别就等于重试次数加 3。
有个地方需要注意,发送到延迟队列的消息重新进行了封装,封装这个消息用的并不是客户端发来的那个消息,而是从 CommitLog 中根据偏移量查找的,代码如下:
MessageExt msgExt = this.brokerController.getMessageStore().lookMessageByOffset(requestHeader.getOffset()); if (null == msgExt) { response.setCode(ResponseCode.SYSTEM_ERROR); response.setRemark("look message by offset failed, " + requestHeader.getOffset()); return CompletableFuture.completedFuture(response); }
如果查询失败,就会给客户端返回系统错误。
这里有个重要的细节,这个消息写入 CommitLog 时,会判断 DELAY 是否大于 0,如果大于 0,就会修改 Topic。代码如下:
//CommitLog 类 asyncPutMessage 方法 if (tranType == MessageSysFlag.TRANSACTION_NOT_TYPE || tranType == MessageSysFlag.TRANSACTION_COMMIT_TYPE) { // Delay Delivery if (msg.getDelayTimeLevel() > 0) { if (msg.getDelayTimeLevel() > this.defaultMessageStore.getScheduleMessageService().getMaxDelayLevel()) { //从源码看,这里最大值是18 msg.setDelayTimeLevel(this.defaultMessageStore.getScheduleMessageService().getMaxDelayLevel()); } topic = TopicValidator.RMQ_SYS_SCHEDULE_TOPIC; //queueId = delayLevel - 1 int queueId = ScheduleMessageService.delayLevel2QueueId(msg.getDelayTimeLevel()); // Backup real topic, queueId MessageAccessor.putProperty(msg, MessageConst.PROPERTY_REAL_TOPIC, msg.getTopic()); MessageAccessor.putProperty(msg, MessageConst.PROPERTY_REAL_QUEUE_ID, String.valueOf(msg.getQueueId())); msg.setPropertiesString(MessageDecoder.messageProperties2String(msg.getProperties())); msg.setTopic(topic); msg.setQueueId(queueId); } }
这里把 Topic 修改为 SCHEDULE_TOPIC_XXXX,供延时队列来调度。进入延时队列后,延时队列会按照下面的时间进行调度:
private String messageDelayLevel = "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h";
上面代码可以看到,延时消息的调度有 18 个等级,最小的 1s,最大的 2h。而从下面的代码我们可以看到,调度使用第三个等级开始的:
if (0 == delayLevel) { delayLevel = 3 + msgExt.getReconsumeTimes(); } msgExt.setDelayTimeLevel(delayLevel);
2.3.3 延时队列
延时队列的代码逻辑在类 ScheduleMessageService,这里的 start 方法触发延时队列的调度,而 start 方法的业务入口在 BrokerStartup 的初始化。
首先,会计算出每个延时等级对应的延时时间(处理到 ms 级别),放到 delayLevelTable,它是一个 ConcurrentHashMap,然后创建一个核心线程数等于 18 的定时线程池,依次对每个级别的延时进行调度。这个任务启动后,会每 100ms 执行一次。代码如下:
public void start() { if (started.compareAndSet(false, true)) { this.load(); this.deliverExecutorService = new ScheduledThreadPoolExecutor(this.maxDelayLevel, new ThreadFactoryImpl("ScheduleMessageTimerThread_")); //省略异步 for (Map.Entry<Integer, Long> entry : this.delayLevelTable.entrySet()) { Integer level = entry.getKey(); Long timeDelay = entry.getValue(); Long offset = this.offsetTable.get(level); if (null == offset) { offset = 0L; } if (timeDelay != null) { //省略异步 this.deliverExecutorService.schedule(new DeliverDelayedMessageTimerTask(level, offset), FIRST_DELAY_TIME, TimeUnit.MILLISECONDS); } } //省略其他逻辑 } }
调度逻辑中,首先根据 Topic 和 queueId 找到对应的消费队列,然后从里面连续读取消息:
public void executeOnTimeup() { ConsumeQueue cq = ScheduleMessageService.this.defaultMessageStore.findConsumeQueue(TopicValidator.RMQ_SYS_SCHEDULE_TOPIC, delayLevel2QueueId(delayLevel)); //省略空处理 SelectMappedBufferResult bufferCQ = cq.getIndexBuffer(this.offset); //省略空处理 long nextOffset = this.offset; try { int i = 0; ConsumeQueueExt.CqExtUnit cqExtUnit = new ConsumeQueueExt.CqExtUnit(); //CQ_STORE_UNIT_SIZE = 20,因为 ConsumeQueue 中一个元素占 20 字节 for (; i < bufferCQ.getSize() && isStarted(); i += ConsumeQueue.CQ_STORE_UNIT_SIZE) { //offset占8个字节 long offsetPy = bufferCQ.getByteBuffer().getLong(); //消息大小占4个字节 int sizePy = bufferCQ.getByteBuffer().getInt(); //ConsumeQueue中tagsCode是一个投递时间点 long tagsCode = bufferCQ.getByteBuffer().getLong(); if (cq.isExtAddr(tagsCode)) { if (cq.getExt(tagsCode, cqExtUnit)) { tagsCode = cqExtUnit.getTagsCode(); } else { //can't find ext content.So re compute tags code. long msgStoreTime = defaultMessageStore.getCommitLog().pickupStoreTimestamp(offsetPy, sizePy); tagsCode = computeDeliverTimestamp(delayLevel, msgStoreTime); } } long now = System.currentTimeMillis(); long deliverTimestamp = this.correctDeliverTimestamp(now, tagsCode); nextOffset = offset + (i / ConsumeQueue.CQ_STORE_UNIT_SIZE); long countdown = deliverTimestamp - now; if (countdown > 0) { //时间未到,等待下次调度 this.scheduleNextTimerTask(nextOffset, DELAY_FOR_A_WHILE); return; } MessageExt msgExt = ScheduleMessageService.this.defaultMessageStore.lookMessageByOffset(offsetPy, sizePy); MessageExtBrokerInner msgInner = ScheduleMessageService.this.messageTimeup(msgExt); //省略事务消息 boolean deliverSuc; //同步异步都有,只保留同步代码 deliverSuc = this.syncDeliver(msgInner, msgExt.getMsgId(), nextOffset, offsetPy, sizePy); } nextOffset = this.offset + (i / ConsumeQueue.CQ_STORE_UNIT_SIZE); } catch (Exception e) { } finally { bufferCQ.release(); } //DELAY_FOR_A_WHILE是 100ms this.scheduleNextTimerTask(nextOffset, DELAY_FOR_A_WHILE); }
因为 messageTimeup 方法使用了原始的 Topic 和 QueueId 新建了消息,所以上面的 syncDeliver 方式是将消息重新投递到原始的队列中,这样消费者可以再次拉取到这条消息进行消费。注意:上面 ConsumeQueue 的 tagsCode 是一个时间点,很容易误解为是 tag 的 hashCode,MessageQueue 的存储元素中最后 8 字节确实是 tag 的 hashCode。
3 总结
消费者消费失败后,会把消费发回给 Broker 进行处理。下图是客户端处理流程:
Broker 收到消息后,会把消息重新发送到 CommitLog,发送到 CommitLog 之前,首先会修改 Topic 为 SCHEDULE_TOPIC_XXXX,这样就发送到了延时队列,延时队列再根据延时级别把消息投递到原始的队列,这样消费者就能再次拉取到。流程如下图:
从流程来看,消费者批量拉取消息,如果部分消息消费失败,那就会整批全部重试。所以做好幂等是必要的。