MaxCompute大数据实践,电商数据仓库选择雪花还是星型模型?

简介: 作者:王永伟 规范化和反规范化   当属性层次被实例化为一系列维度,而不是单一的维度时,此模式被称为雪花模式。大多数联机事务处理系统(OLTP)的底层数据结构在设计时采用此种规范化技术,通过规范化处理将重复属性移至其自身所属的表中,删除冗余数据。

作者:王永伟

规范化和反规范化

  当属性层次被实例化为一系列维度,而不是单一的维度时,此模式被称为雪花模式。大多数联机事务处理系统(OLTP)的底层数据结构在设计时采用此种规范化技术,通过规范化处理将重复属性移至其自身所属的表中,删除冗余数据。

  此种方法用在OLTP系统中可以有效避免数据冗余导致的不一致性。比如在OLTP系统中,存在商品表和类目表,且商品表中冗余有类目表的属性字段,假设对某类目进行更新,则必须更新商品表和类目表,且由于商品和类目是一对多的关系,商品表可能每次需要更新几十万甚至上百万条记录,这是不合理的。而对于联机分析处理系统(OLAP),数据是稳定的,不存在OLTP系统中存在的问题。

  对于淘系商品维度,如果采用雪花模式进行规范化处理,将表现为如下形式:

cb25a1387dc39f1fafa48151177a48438a9c93a4

  将维度的属性层次合并到单个维度中的操作称为反规范化。分析系统的主要目的是用于数据分析和统计,如何更方便用户进行统计分析决定了分析系统的优劣。采用雪花模式,用户在统计分析的过程中需要大量的关联操作,使用复杂度高,同时查询性能很差;采用反规范化处理,方便易用且性能好。

  对于淘宝商品维度,如果采用反规范化处理,将表现为如下形式:

55f676d3d4f7167cf632e0c4cb71ad80da206f7d

  如上所述,从用户的角度来看这简化了模型,并且使数据库查询优化器的连接路径比完全规范化的模型简化许多。反规范化的维度仍包含与规范化模型同样的信息和关系,从分析角度来看,没有丢失任何信息,但复杂性降低了。

  采用雪花模式,除了可以节约一部分存储,对于OLAP系统来说没有其它效用。而现阶段存储的成本非常低。基于易用性和性能考虑,维度表一般是很不规范化的。实际应用中,几乎总是使用维度表的空间来换取简明性和查询性能。


  更多数仓理论请关注:《大数据之路:阿里巴巴大数据实践 


       推荐几种建模工具:ERStudio / ERWin / PowerDesigner



相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
3月前
|
机器学习/深度学习 人工智能 供应链
别再靠拍脑袋进货了!用大数据让电商库存“自己会算”
别再靠拍脑袋进货了!用大数据让电商库存“自己会算”
269 10
存储 数据采集 大数据
141 0
|
4月前
|
SQL 缓存 分布式计算
【跨国数仓迁移最佳实践5】MaxCompute近线查询解决方案助力物流电商等实时场景实现高效查询
本系列文章将围绕东南亚头部科技集团的真实迁移历程展开,逐步拆解 BigQuery 迁移至 MaxCompute 过程中的关键挑战与技术创新。本篇为第5篇,解析跨国数仓迁移背后的性能优化技术。 注:客户背景为东南亚头部科技集团,文中用 GoTerra 表示。
244 8
|
5月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。
|
6月前
|
机器学习/深度学习 供应链 算法
仓库一多就乱套?你可能缺的不是人,而是懂大数据的脑子!
仓库一多就乱套?你可能缺的不是人,而是懂大数据的脑子!
144 0
|
机器学习/深度学习 存储 SQL
数据仓库革新:Snowflake在云数据平台中的创新实践
【10月更文挑战第27天】Snowflake作为云原生数据仓库的领导者,以其多租户、事务性、安全的特性,支持高度可扩展性和弹性,全面兼容SQL及多种数据类型。本文探讨了Snowflake在现代化数据仓库迁移、实时数据分析、数据存储与管理及机器学习集成等领域的创新实践和应用案例,展示了其在云数据平台中的强大优势和未来潜力。
647 2
|
存储 运维 Cloud Native
数据仓库革新:Snowflake在云数据平台中的创新实践
【10月更文挑战第26天】随着大数据时代的到来,数据仓库正经历重大变革。本文探讨了Snowflake在云数据平台中的创新应用,通过弹性扩展、高性能查询、数据安全、多数据源接入和云原生架构等最佳实践,展示了其独特优势,帮助企业提升数据处理和分析效率,保障数据安全,降低运维成本,推动业务快速发展。
622 2
|
机器学习/深度学习 监控 搜索推荐
电商平台如何精准抓住你的心?揭秘大数据背后的神秘推荐系统!
【10月更文挑战第12天】在信息爆炸时代,数据驱动决策成为企业优化决策的关键方法。本文以某大型电商平台的商品推荐系统为例,介绍其通过收集用户行为数据,经过预处理、特征工程、模型选择与训练、评估优化及部署监控等步骤,实现个性化商品推荐,提升用户体验和销售额的过程。
661 1
|
存储 小程序 Apache
10月26日@杭州,飞轮科技 x 阿里云举办 Apache Doris Meetup,探索保险、游戏、制造及电信领域数据仓库建设实践
10月26日,由飞轮科技与阿里云联手发起的 Apache Doris 杭州站 Meetup 即将开启!
269 0

相关产品

  • 云原生大数据计算服务 MaxCompute