《千亿特征流式学习在大规模推荐排序场景的应用》电子版地址

简介: 千亿特征流式学习在大规模推荐排序场景的应用

《千亿特征流式学习在大规模推荐排序场景的应用》千亿特征流式学习在大规模推荐排序场景的应用

电子书:

屏幕快照 2022-06-17 上午9.58.35.png

                
            </div>
目录
相关文章
|
2月前
|
机器学习/深度学习 搜索推荐 大数据
深度解析:如何通过精妙的特征工程与创新模型结构大幅提升推荐系统中的召回率,带你一步步攻克大数据检索难题
【10月更文挑战第2天】在处理大规模数据集的推荐系统项目时,提高检索模型的召回率成为关键挑战。本文分享了通过改进特征工程(如加入用户活跃时段和物品相似度)和优化模型结构(引入注意力机制)来提升召回率的具体策略与实现代码。严格的A/B测试验证了新模型的有效性,为改善用户体验奠定了基础。这次实践加深了对特征工程与模型优化的理解,并为未来的技术探索提供了方向。
130 2
深度解析:如何通过精妙的特征工程与创新模型结构大幅提升推荐系统中的召回率,带你一步步攻克大数据检索难题
|
5月前
|
机器学习/深度学习 自然语言处理 并行计算
淘宝搜索中的深度语义模型:从理论到实践
淘宝搜索系统通过引入深度语义模型,极大地提升了搜索质量和用户体验。这些模型不仅能够准确理解用户的需求,还能够智能地匹配和推荐商品,为用户提供了一个更加便捷、个性化的购物环境。随着技术的不断发展和完善,淘宝搜索将会变得更加智能和高效。
|
7月前
|
自然语言处理 搜索推荐 算法
【一文读懂】基于Havenask向量检索+大模型,构建可靠的智能问答服务
Havenask是阿里巴巴智能引擎事业部自研的开源高性能搜索引擎,深度支持了包括淘宝、天猫、菜鸟、高德、饿了么在内的几乎整个阿里的搜索业务。本文针对性介绍了Havenask作为一款高性能的召回搜索引擎,应用在向量检索和LLM智能问答场景的解决方案和核心优势。通过Havenask向量检索+大模型可以构建可靠的垂直领域的智能问答方案,同时快速在业务场景中进行实践及应用。
111195 64
|
7月前
|
机器学习/深度学习 监控 自动驾驶
新视频分析技术TDViT发布:提升稠密视频分析效率
【2月更文挑战第16天】新视频分析技术TDViT发布:提升稠密视频分析效率
114 1
新视频分析技术TDViT发布:提升稠密视频分析效率
|
机器学习/深度学习 自然语言处理 数据挖掘
向量召回:深入评估离线体系,探索优质召回方法
向量召回:深入评估离线体系,探索优质召回方法
向量召回:深入评估离线体系,探索优质召回方法
|
算法 搜索推荐
【直播预告】融合复杂目标且支持实时调控的重排模型在淘宝流式推荐场景的应用
【直播预告】融合复杂目标且支持实时调控的重排模型在淘宝流式推荐场景的应用
315 1
|
机器学习/深度学习 编解码 自然语言处理
用语言直接检索百万视频,这是阿里TRECVID 视频检索冠军算法
利用自然语言检索百万视频,人物、场景、事件都不能放过,这就是既困难又吸引了众多研究者的视频检索任务。
1254 0
用语言直接检索百万视频,这是阿里TRECVID 视频检索冠军算法
|
机器学习/深度学习 算法
《阿里千亿特征深度学习算法XNN实践》电子版地址
阿里千亿特征深度学习算法XNN实践
129 0
《阿里千亿特征深度学习算法XNN实践》电子版地址
《DeepRec:大规模稀疏模型训练引擎》电子版地址
《DeepRec:大规模稀疏模型训练引擎》.ppt
120 0
《DeepRec:大规模稀疏模型训练引擎》电子版地址