Tensor:Pytorch神经网络界的Numpy(二)

简介: Tensor:Pytorch神经网络界的Numpy(二)

截取元素


当然,我们创建Tensor张量,是为了使用里面的数据,那么就不可避免的需要获取数据进行处理,具体截取元素的方式如表:

函数 意义
index_select(input,dim,index) 在指定维度选择一些行或者列
nonzero(input) 获取非0元素的下标
masked_select(input,mask) 使用二元值进行选择
gather(input,dim,index) 在指定维度上选择数据,输出的维度与index一致(index的类型必须是LongTensor类型的)
scatter_(input,dim,index,src) 为gatter的反操作,根据指定索引补充数据(将src中数据根据index中的索引按照dim的方向填进input中)

示例代码如下所示:

import torch
# 设置随机数种子,保证每次运行结果一致
torch.manual_seed(100)
t1 = torch.randn(2, 3)
# 打印t1
print(t1)
# 输出第0行数据
print(t1[0, :])
# 输出t1大于0的数据
print(torch.masked_select(t1, t1 > 0))
# 输出t1大于0的数据索引
print(torch.nonzero(t1))
# 获取第一列第一个值,第二列第二个值,第三列第二个值为第1行的值
# 获取第二列的第二个值,第二列第二个值,第三列第二个值为第2行的值
index = torch.LongTensor([[0, 1, 1], [1, 1, 1]])
# 取0表示以行为索引
a = torch.gather(t1, 0, index)
print(a)
# 反操作填0
z = torch.zeros(2, 3)
print(z.scatter_(1, index, a))


运行之后,效果如下:


我们a = torch.gather(t1, 0, index)对其做了一个图解,方便大家理解。如下图所示:

当然,我们直接有公司计算,因为这么多数据标线实在不好看,这里博主列出转换公司供大家参考:

当dim=0时,out[i,j]=input[index[i,j]][j]
当dim=1时,out[i,j]=input[i][index[i][j]]


简单的数学运算

与Numpy一样,Tensor也支持数学运算。这里,博主列出了常用的数学运算函数,方便大家参考:

函数 意义
abs/add 绝对值/加法
addcdiv(t,v,t1,t2) t1与t2逐元素相除后,乘v加t
addcmul(t,v,t1,t2) t1与t2逐元素相乘后,乘v加t
ceil/floor 向上取整/向下取整
clamp(t,min,max) 将张量元素限制在指定区间
exp/log/pow 指数/对数/幂
mul(或*)/neg 逐元素乘法/取反
sigmoid/tanh/softmax 激活函数
sign/sqrt 取符号/开根号

需要注意的是,上面表格所有的函数操作均会创建新的Tensor,如果不需要创建新的,使用这些函数的下划线"_"版本。


示例如下:

t = torch.Tensor([[1, 2]])
t1 = torch.Tensor([[3], [4]])
t2 = torch.Tensor([5, 6])
# t+0.1*(t1/t2)
print(torch.addcdiv(t, 0.1, t1, t2))
# t+0.1*(t1*t2)
print(torch.addcmul(t, 0.1, t1, t2))
print(torch.pow(t,3))
print(torch.neg(t))


运行之后,效果如下:


上面的这些函数都很好理解,只有一个函数相信没接触机器学习的时候,不大容易理解。也就是sigmoid()激活函数,它的公式如下:


归并操作


简单的理解,就是对张量进行归并或者说合计等操作,这类操作的输入输出维度一般并不相同,而且往往是输入大于输出维度。而Tensor的归并函数如下表所示:

函数 意义
cumprod(t,axis) 在指定维度对t进行累积
cumsum 在指定维度对t进行累加
dist(a,b,p=2) 返回a,b之间的p阶范数
mean/median 均值/中位数
std/var 标准差/方差
norm(t,p=2) 返回t的p阶范数
prod(t)/sum(t) 返回t所有元素的积/和

示例代码如下所示:

t = torch.linspace(0, 10, 6)
a = t.view((2, 3))
print(a)
b = a.sum(dim=0)
print(b)
b = a.sum(dim=0, keepdim=True)
print(b)


运行之后,效果如下:



需要注意的是,sum函数求和之后,dim的元素个数为1,所以要被去掉,如果要保留这个维度,则应当keepdim=True,默认为False。


比较操作


在量化交易中,我们一般会对股价进行比较。而Tensor张量同样也支持比较的操作,一般是进行逐元素比较。具体函数如下表:

函数 意义
equal 比较张量是否具有相同的shape与值
eq 比较张量是否相等,支持broadcast
ge/le/gt/lt 大于/小于比较/大于等于/小于等于比较
max/min(t,axis) 返回最值,若指定axis,则额外返回下标
topk(t,k,dim) 在指定的dim维度上取最高的K个值

示例代码如下所示:

t = torch.Tensor([[1, 2], [3, 4]])
t1 = torch.Tensor([[1, 1], [4, 4]])
# 获取最大值
print(torch.max(t))
# 比较张量是否相等
# equal直接返回True或False
print(torch.equal(t, t1))
# eq返回对应位置是否相等的布尔值与两者维度相同
print(torch.eq(t, t1))
# 取最大的2个元素,返回索引与值
print(torch.topk(t, 1, dim=0))


运行之后,输出如下:



矩阵运算


机器学习与深度学习中,存在大量的矩阵运算。与Numpy一样常用的矩阵运算一样,一种是逐元素相乘,一种是点积乘法。函数如下表所示:

函数 意义
dot(t1,t2) 计算t1与t2的点积,但只能计算1维张量
mm(mat1,mat2) 计算矩阵乘法
bmm(tatch1,batch2) 含batch的3D矩阵乘法
mv(t1,v1) 计算矩阵与向量乘法
t 转置
svd(t) 计算t的SVD分解

这里有3个主要的点积计算需要区分,dot()函数只能计算1维张量,mm()函数只能计算二维的张量,bmm只能计算三维的矩阵张量。示例如下:

# 计算1维点积
a = torch.Tensor([1, 2])
b = torch.Tensor([3, 4])
print(torch.dot(a, b))
# 计算2维点积
a = torch.randint(10, (2, 3))
b = torch.randint(6, (3, 4))
print(torch.mm(a, b))
# 计算3维点积
a = torch.randint(10, (2, 2, 3))
b = torch.randint(6, (2, 3, 4))
print(torch.bmm(a, b))


运行之后,输出如下:


相关文章
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
260 1
|
5月前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
192 59
|
2月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
3月前
|
机器学习/深度学习 PyTorch TensorFlow
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
155 1
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
76 1
|
3月前
|
TensorFlow 算法框架/工具 Python
【Tensorflow 2】解决'Tensor' object has no attribute 'numpy'
解决'Tensor' object has no attribute 'numpy'
61 3
|
3月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
49 0
|
3月前
|
PyTorch 算法框架/工具
【Pytorch】解决Fan in and fan out can not be computed for tensor with fewer than 2 dimensions
本文提供了两种解决PyTorch中由于torchtext版本问题导致的“Fan in and fan out can not be computed for tensor with fewer than 2 dimensions”错误的方法。
84 2

热门文章

最新文章