初识PyTorch:从安装到入门,从入门到放弃

简介: 初识PyTorch:从安装到入门,从入门到放弃

PyTorch


PyTorch是Facebook团队于2017年1月发布的一个深度学习框架,虽然晚于TensorFlow,也没有TensorFlow火,但目前已经与TensorFlow奇虎相当。


而且PyTorch采用了Python语言的接口,可以说它才是Python程序员最容易上手的深度学习框架。


它就像GPU的Numpy,与Python一样都属于动态框架。PyTorch继承了Torch的灵活,动态的编程环境和友好的用户界面,支持以快速和灵活的方式构建动态神经网络。


还允许在训练的过程中,快速更改代码而不妨碍其性能,支持动态图形等尖端AI模型的能力,是快速实验的理想选择。


安装配置

安装PyTorch时,需要检查当前环境是否有GPU。如果没有GPU,那么就需要安装CPU版本,如果有GPU,则安装GPU版本。


(1)首先,我们需要安装NVIDIA驱动,安装网址如下:

https://www.nvidia.cn/Download/index.aspx?lang=cn

打开该网址,输入你的显卡参数,点击搜索即可下载。然后通过下一步下一步进行安装,安装成功之后,输入命令如下图所示:



(2)安装cuDNN


NVIDIA cuDNN是用于深度神经的GPU加速库。注册NVIDIA并下载cuDNN包,下载网址如下:

https://developer.nvidia.com/rdp/cudnn-archive


(3)安装Python以及PyTorch


通过一下网址选择自己的对应的版本,然后生成指定的命令:

https://pytorch.org/

复制后面的命令,然后安装即可,安装效果如下图所示:


安装验证

到这里,我们的GPU版PyTorch就安装成功了。当然,我们还需要验证是否安装成功,示例代码如下所示:

import torch
from torch.backends import cudnn
x = torch.tensor([10.0])
x = x.cuda()
print(x)
print(cudnn.is_acceptable(x))


运行之后,效果如下,即代表成功。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
237 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
1月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
3071 3
|
1月前
|
PyTorch TensorFlow 算法框架/工具
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
本文提供了在Ubuntu 18.04操作系统的NVIDIA Jetson平台上安装深度学习和计算机视觉相关库的详细步骤,包括PyTorch、OpenCV、ONNX、TensorFlow等。
40 1
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
|
1月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
337 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
1月前
|
并行计算 PyTorch 编译器
|
1月前
|
并行计算 开发工具 异构计算
在Windows平台使用源码编译和安装PyTorch3D指定版本
【10月更文挑战第6天】在 Windows 平台上,编译和安装指定版本的 PyTorch3D 需要先安装 Python、Visual Studio Build Tools 和 CUDA(如有需要),然后通过 Git 获取源码。建议创建虚拟环境以隔离依赖,并使用 `pip` 安装所需库。最后,在源码目录下运行 `python setup.py install` 进行编译和安装。完成后即可在 Python 中导入 PyTorch3D 使用。
154 0
|
3月前
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与DistributedDataParallel:分布式训练入门指南
【8月更文第27天】随着深度学习模型变得越来越复杂,单一GPU已经无法满足训练大规模模型的需求。分布式训练成为了加速模型训练的关键技术之一。PyTorch 提供了多种工具来支持分布式训练,其中 DistributedDataParallel (DDP) 是一个非常受欢迎且易用的选择。本文将详细介绍如何使用 PyTorch 的 DDP 模块来进行分布式训练,并通过一个简单的示例来演示其使用方法。
279 2
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
【Deepin 20深度探索】一键解锁Linux深度学习潜能:从零开始安装Pytorch,驾驭AI未来从Deepin出发!
【8月更文挑战第2天】随着人工智能的迅猛发展,深度学习框架Pytorch已成为科研与工业界的必备工具。Deepin 20作为优秀的国产Linux发行版,凭借其流畅的用户体验和丰富的软件生态,为深度学习爱好者提供理想开发平台。本文引导您在Deepin 20上安装Pytorch,享受Linux下的深度学习之旅。
85 12
|
3月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
49 0
|
3月前
|
PyTorch 算法框架/工具 Python
安装anaconda配置pytorch虚拟环境遇到的问题及解决办法
本文介绍了在配置Anaconda时遇到`PackagesNotFoundError`的问题,并提供了通过添加`conda-forge`通道和创建指定Python版本的PyTorch虚拟环境来解决这个问题的方法。

热门文章

最新文章