【机器学习模型部署】在 Android App 使用TensorFlow Lite

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 【机器学习模型部署】在 Android App 使用TensorFlow Lite

大家好

0

上月底我组织了【组队学习】TensorFlow 入门课程(中文),截至目前有300多同学加入。


学习内容是


  • TensorFlow 部署简介
  • TensorFlow Lite简介
  • 在 Android app 使用TensorFlow Lite
  • 在 iOS app 使用TensorFlow Lite
  • 使用TensorFlow Serving 部署


主要就是 TensorFlow LiteTensorFlow.jsTF Serving的实操,其实今年3月份我就接触 TensorFlow.js 了,当时还写了一篇入门教程:TensorFlow.js 用浏览器玩机器学习,9月在谷歌开发者大会上,我还亲身体验了这些黑科技,非常奇妙。


但是作为一个对安卓开发一无所知的人,我也想尝试借助 TensorFlow Lite 在 Android 和 iOS 上部署并使用机器学习模型。Learn by doing是我最推崇的学习方法,所以就跟着课程第二章和第三章code了一下,收获满满,本文即为我做的学习笔记。


TensorFlow Lite 简介


TensorFlow Lite 是一种在设备端运行 TensorFlow 模型的开源深度学习框架。移动开发要求轻量、低延迟、高效、隐私保护、省电,Lite很好满足了以上要求。


640.png


TensorFlow Lite 实现也很简单,最核心的是转化并保存模型、加载TFLite模型并配置张量。


640.png


训练、保存TF模型

这一步再细分为5小步,分别是,获取数据、获取基础模型、构建模型、训练模型、保存模型。


640.png


基础模型可以直接去 TensorFlow Hub 获取


640.png


https://hub.tensorflow.google.cn/


可以在页面左侧选择想要的模型类别、格式、TF版本、是否支持微调等等,也可以直接搜索。


比如图像分类,可以使用mobilenet_v2这个模型,点击下载即可。也可以复制链接,通过hub.KerasLayer方法下载。


640.png


剩下的步骤大家应该很熟悉了,训练好的模型,用tf.saved_model.save方法保存模型即可,推荐SavedModel格式。


加载TFLite模型并配置张量


这一步细分为3小步


640.png

将模型格式转换TFLite格式,转化可以使用TFLiteConverter方法,保存就是普通的文件写入操作,注意格式是.tflite。


640.png


加载TFLite并配置张量也非常简单,使用Interpreter方法就行了。


640.png

正式项目中使用测试集进行测试也是必须的,查看准确率等评价指标是否还在接受范围内。


640.png


TFLite还提供了模型优化方法converter.optimizations,可以使模型更小巧。


640.png


TFLite Model Maker


借助 TensorFlow Lite Model Maker 库,可以简化使用自定义数据集训练 TensorFlow Lite 模型的过程。该库使用迁移学习来减少所需的训练数据量并缩短训练时间。目前支持图像分类、文字分类、音频、BERT问答等任务。使用很简单,先安装


pip install tflite-model-maker


借助 Model Maker,仅仅通过几行代码即可使用自定义数据集训练 TensorFlow Lite 模型。例如,以下就是训练图像分类模型的步骤。


data = ImageClassifierDataLoader.from_folder('flower_photos/')
train_data, test_data = data.split(0.9)
model = image_classifier.create(train_data)
loss, accuracy = model.evaluate(test_data)
model.export(export_dir='/tmp/')


TFLite Model Maker 给了我们更多的模型创建的可选项。


640.png


实践:使用Android Studio 开发一个TFLite模型的微型APP


先安装Android Studio ,它是谷歌推出的一个Android集成开发工具,基于IntelliJ IDEA. 类似 Eclipse ADT,Android Studio 提供了集成的 Android 开发工具用于开发和调试。


下载地址:https://developer.android.google.cn/studio


640.png


另外我们还能顺手从0开始接触一下Kotlin,这是谷歌推荐使用的Andriod App开发语言。


640.png

1

先熟悉一下流程,New一个Project,选Empty Activity

640.png


项目配置页只重命名项目名称即可,其他不用管,等待初始化完成即可。


2


编写布局,我们的重点不是界面设计和实现,了解流程即可。不过后期也可以学习一下Android界面布局基础知识。


3


最核心的是添加TFLite依赖这一步,因为TFLite不是Android自带的API,需要使用Gradle构建工具引入TensorFlow Lite外部链接库。注意,Android工程中有两个gradle文件,我们需要的是App及的build.gradle文件。


640.png


在dependencies 中添加三个implementation即可(注意版本号)


640.png


然后再android配置项添加aaptOptions(安卓资源打包工具),配置为不要压缩TFLite文件,否则无法使用。


640.png


配置完成后点击右上角立即同步,等待完成即可。

640.png


下一步是切换为工程视角,在app-src目录下新建一个Assets 文件夹,模型会放到这里,直接把模型paste进来就行了。


640.png


640.png

最后一步就比较复杂和关键了——--使用模型


步骤:加载模型、实例化解释器、获取输入数据并格式化模型需要的数据类型、构造存放输出数据的数据结构、使用模型进行推理、获取结果显示在界面上


加载模型这部分代码写在app-src-main-java下MainActivity文件中


640.png

到这里才出现第一个难点,需要用Kotlin写一个loadModelFile函数来加载模型


640.png

实例化解释器在MainActivity文件类级别加入模型和解释器的声明,这里调用了上一步中的loadModelFile函数,把assets下的模型读入到tflitemodel对象,然后将tflitemodel作为参数实例化解释器,赋值给解释器对象tflite。


640.png


获取输入数据并格式化模型需要的数据类型

还记得加载TFLite模型并配置张量这一步吗,有一个获取输入interpreter.get_input_detailes详细信息的步骤。记下输入输出信息的shape和dtype

640.png

在kotlin中使用getInputTensor结构可以实现类似的效果


640.png


然后完成数据数据的格式化,这一步也超纲了,需要后续补充相关知识才能理解。


构造存放输出数据的数据结构


和上面类似,input改为output,不再重复。


使用模型进行推理


模型推理代码就简单了,把输入和输出数据对象作为参数放进run方法就行了


640.png


获取结果显示在界面上


将获取到的ByteBuffer转化为浮点型数据弹窗显示,主要就是定义这个弹窗。其实这部分对应界面设计和实现,也需要后续补充知识才能理解。


640.png


完整代码在:https://github.com/lmoroney/tfbook


后续准备认真学习一下,不过我不太喜欢学习一大堆基础知识,准备尝试复刻并运行成功一个官方案例,然后在此基础上根据自己的需求和兴趣魔改一个新app,这样学的会更透彻。


感兴趣的朋友可以点击阅读原文一起学啊。

相关文章
|
9天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
30 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
19天前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
47 5
|
3月前
|
API UED 开发者
如何在Uno Platform中轻松实现流畅动画效果——从基础到优化,全方位打造用户友好的动态交互体验!
【8月更文挑战第31天】在开发跨平台应用时,确保用户界面流畅且具吸引力至关重要。Uno Platform 作为多端统一的开发框架,不仅支持跨系统应用开发,还能通过优化实现流畅动画,增强用户体验。本文探讨了Uno Platform中实现流畅动画的多个方面,包括动画基础、性能优化、实践技巧及问题排查,帮助开发者掌握具体优化策略,提升应用质量与用户满意度。通过合理利用故事板、减少布局复杂性、使用硬件加速等技术,结合异步方法与预设缓存技巧,开发者能够创建美观且流畅的动画效果。
81 0
|
3月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
84 0
|
3月前
|
前端开发 开发者 设计模式
揭秘Uno Platform状态管理之道:INotifyPropertyChanged、依赖注入、MVVM大对决,帮你找到最佳策略!
【8月更文挑战第31天】本文对比分析了 Uno Platform 中的关键状态管理策略,包括内置的 INotifyPropertyChanged、依赖注入及 MVVM 框架。INotifyPropertyChanged 方案简单易用,适合小型项目;依赖注入则更灵活,支持状态共享与持久化,适用于复杂场景;MVVM 框架通过分离视图、视图模型和模型,使状态管理更清晰,适合大型项目。开发者可根据项目需求和技术栈选择合适的状态管理方案,以实现高效管理。
44 0
|
9天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
38 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
9天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
48 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
25天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
109 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
3月前
|
机器学习/深度学习 算法 TensorFlow
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
55 1

热门文章

最新文章

相关产品

  • 人工智能平台 PAI