开发指南—函数—窗口函数

简介: 传统的Group By函数会按照分组后的查询结果进行聚合计算,且每个分组只输出一条数据。但与传统的Group By函数不同,窗口函数(也称OLAP函数)可以为每个分组返回多个值,且不会影响记录的数量。本文介绍如何使用窗口函数

使用限制

  • 窗口函数仅支持用于SELECT语句中。
  • 窗口函数禁止与单独的聚合函数混合使用。例如,在如下语句中,SUM为聚合函数,且未与OVER关键字组合,因此您无法使用如下语句进行查询:
SELECT SUM(NAME),COUNT() OVER(...) FROM SOME_TABLE
  • 若需实现如上查询,您可以使用如下语句代替:
SELECT SUM(NAME),WIN1 FROM (SELECT NAME,COUNT() OVER(...) AS WIN1 FROM SOME_TABLE) alias

语法


function OVER ([[partition by column_some1] [order by column_some2] [RANGE|ROWS BETWEEN start AND end]])
参数 说明
function 该部分指定了窗口函数中支持的函数,取值范围如下:
  • 可以在窗口函数中结合OVER关键字使用如下聚合函数:
    • SUM()
    • COUNT()
    • AVG()
    • MAX()
    • MIN()
  • 专用窗口函数如下:
    • ROW_NUMBER()
    • RANK()
    • DENSE_RANK()
    • PERCENT_RANK()
    • CUME_DIST()
    • FIRST_VALUE()
    • LAST_VALUE()
    • LAG()
    • LEAD()
    • NTH_VALUE()

说明

  • 当使用专用窗口函数RANK()DENSE_RANK()时,窗口函数中的order by部分不可省略。更多专用窗口函数的介绍,请参见Window Function Descriptions
  • 支持如下专用窗口函数:
    • PERCENT_RANK()
    • CUME_DIST()
    • FIRST_VALUE()
    • LAST_VALUE()
    • LAG()
    • LEAD()
    • NTH_VALUE()
[partition by column_some1] 该部分指定了窗口函数的分区规范,用于将输入行分散到不同的分区中,过程和GROUP BY子句的分散过程相似。

说明 partition by部分不支持引用复杂表达式,如您可以引用column_some1,但不可以引用column_some1 + 1

[order by column_some2] 该部分指定了窗口函数的排序规范,用于确定输入数据行在窗口函数中执行的顺序。

说明 order by部分不支持引用复杂表达式,如您可以引用column_some2,但不可以引用column_some2 + 1

[RANGE|ROWS BETWEEN start AND end] 该部分指定了窗口函数的窗口区间,支持按照计算列值的范围(即RANGE)或计算列的行数(即ROWS)等两种模式来定义区间。

您可以使用BETWEEN start AND end指定边界的可取值,其中:

  • start取值范围如下:
    • CURRENT ROW:当前行
    • N PRECEDING:前N行
    • UNBOUNDED PRECEDING:直到第1行
  • end取值范围如下:
    • CURRENT ROW:当前行
    • N FOLLOWING:后N行
    • UNBOUNDED FOLLOWING:直到最后1行

使用示例

假设已有如下原始数据:


| year | country | product    | profit |

|------|---------|------------|--------|
| 2001 | Finland | Phone | 10 |
| 2000 | Finland | Computer | 1500 |
| 2001 | USA | Calculator | 50 |
| 2001 | USA | Computer | 1500 |
| 2000 | India | Calculator | 75 |
| 2000 | India | Calculator | 75 |
| 2001 | India | Calculator | 79 |
  • 您可以使用如下聚合函数来统计每个国家的总利润:
select
country,
sum(profit) over (partition by country) sum_profit
from test_window;
  • 返回结果如下:
| country | sum_profit |
|---------|------------|
| India | 229 |
| India | 229 |
| India | 229 |
| USA | 1550 |
| USA | 1550 |
| Finland | 1510 |
| Finland | 1510 |
  • 您可以使用如下专用窗口函数将数据按照国家分组,并将国家内的产品按利润由小到大排名:
select
'year',
country,
product,
profit,
rank() over (partition by country order by profit) as rank
from test_window;
  • 返回结果如下:
| year | country | product    | profit | rank |
|------|---------|------------|--------|------|
| 2001 | Finland | Phone | 10 | 1 |
| 2000 | Finland | Computer | 1500 | 2 |
| 2001 | USA | Calculator | 50 | 1 |
| 2001 | USA | Computer | 1500 | 2 |
| 2000 | India | Calculator | 75 | 1 |
| 2000 | India | Calculator | 75 | 1 |
| 2001 | India | Calculator | 79 | 3 |
  • 您可以使用如下带有ROWS命令的语句,查询根据当前窗口的每行数据计算利润部分的总和:
select 
'year',
country,
profit,
sum(profit) over (partition by country order by 'year' ROWS BETWEEN UNBOUNDED PRECEDING and CURRENT ROW) as sum_win
from test_window;
  • 返回结果如下:
+------+---------+--------+-------------+
| year | country | profit | sum_win |
+------+---------+--------+-------------+
| 2001 | USA | 50 | 50 |
| 2001 | USA | 1500 | 1550 |
| 2000 | India | 75 | 75 |
| 2000 | India | 75 | 150 |
| 2001 | India | 79 | 229 |
| 2000 | Finland | 1500 | 1500 |
| 2001 | Finland | 10 | 1510 |
相关文章
|
SQL 分布式计算 Unix
阿里云-DataWorks- ODPS SQL开发3-日期与字符、数学运算、聚合函数函数
阿里云-DataWorks- ODPS SQL开发3 本文主要讲解日常大量会接触到的一些常用的日期与字符、数学运算、聚合函数函数。
|
8月前
|
存储 Prometheus 并行计算
10倍性能提升-SLS Prometheus 时序存储技术演进
本文将介绍近期SLS Prometheus存储引擎的技术更新,在兼容 PromQL 的基础上实现 10 倍以上的性能提升。同时技术升级带来的成本红利也将回馈给使用SLS 时序引擎的上万内外部客户。
158664 7
如何快速体验通义千问全系列模型能力
体验通义千问全系列模型能力,需在阿里云开通百炼服务。访问阿里云百炼控制台的“模型广场”,可选择包括通义系列在内的多种模型。按照指南进行训练、部署和评测。详情参阅官方文档。
|
5月前
|
SQL 存储 关系型数据库
从Hive建表语句到MySQL的转换
【8月更文挑战第11天】
336 7
|
8月前
|
监控 Java 测试技术
五步定位性能瓶颈
在进行性能测试前,了解数据流向和系统架构至关重要。绘制数据流向图以识别潜在瓶颈,使用“水池模型”分析系统架构,优化测试流程,以提高测试效率。日志分析是诊断性能问题的关键,通过快速定位问题、保持环境一致性以及灵活调整日志级别来辅助测试。硬件资源占用分析,如CPU、内存、磁盘I/O和网络I/O,能帮助发现底层性能瓶颈。数据库监控,特别是通过等待事件分析,对解决性能问题具有重要意义。最后,服务器监控和代码深度剖析是解决复杂性能问题的终极手段,利用专业工具深入应用中间件,定位软件资源限制和代码层面的问题。通过这些策略,可以系统地识别和解决性能瓶颈,提升系统性能。
52510 4
|
8月前
|
存储 Kubernetes 数据安全/隐私保护
Kubernetes的ConfigMap和Secret
Kubernetes的ConfigMap和Secret
142 0
|
8月前
|
流计算 Docker 容器
【docker专题_03】docker搭建Flink集群
【docker专题_03】docker搭建Flink集群
178 2
开发指南—函数—窗口函数
传统的Group By函数会按照分组后的查询结果进行聚合计算,且每个分组只输出一条数据。但与传统的Group By函数不同,窗口函数(也称OLAP函数)可以为每个分组返回多个值,且不会影响记录的数量。本文介绍如何使用窗口函数
开发指南—函数—聚合函数
本文介绍了PolarDB-X支持及不支持的聚合函数。
开发指南—函数—数学函数
本文介绍了PolarDB-X支持的数学函数。
104 0