深度学习入门(5)如何对神经网络模型训练结果进行评价

简介: 深度学习入门(5)如何对神经网络模型训练结果进行评价

如何对神经网络模型训练结果进行评价


上一篇文章《深度学习入门(4)【深度学习实战】无框架实现两层神经网络的搭建与训练过程》介绍了基于mnist的手写体数字集的两层神经网络的搭建与训练过程,通过损失函数的训练结果我们可以发现,随着训练的进行,损失函数逐渐减小,但是光这一点并不能很好的说明该神经网络的训练结果能够很好的对于其他数据也能够达到同样的精确度。这就涉及到神经网络的泛化能力问题。神经网络学习的最初目标是掌握泛化能力,因此,要评价神经网络的泛化能力,就必须使用不包含在训练数据中的数据。


拟合


神经网络的学习中,必须确认是否能够正确识别训练数据以外的其他数据,即确认是否会发生过拟合。过拟合是指,虽然训练数据中的能够达到很好的识别精度,但是对于测试数据的识别精度却效果很差。


神经网络的评价


基于上一篇文章自己搭建的神经网络,本文我们对于不同的epoch次数下的训练数据和测试数据的识别精度进行输出,对两个识别精度进行比较,看该神经网络训练的结果是否也能够很好的识别测试数据。


注:epoch表示学习中所有的训练数据均被使用过一次的更新次数。

训练集与测试集精度的比较,实现代码如下:(网络的搭建代码见上一篇文章


import sys, os
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from two_layer_net import TwoLayerNet #导入自己搭建的两层神经网络
# 读入数据
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True)
network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)
iters_num = 10000  # 设定循环的次数1000
train_size = x_train.shape[0]
batch_size = 100
learning_rate = 0.1
train_acc_list = []  #记录训练集的识别精度
test_acc_list = []   #记录测试集的识别精度
iter_per_epoch = max(train_size / batch_size, 1)
for i in range(iters_num):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]
    # 计算梯度
    #grad = network.numerical_gradient(x_batch, t_batch)
    grad = network.gradient(x_batch, t_batch)
    # 更新参数
    for key in ('W1', 'b1', 'W2', 'b2'):
        network.params[key] -= learning_rate * grad[key]
    loss = network.loss(x_batch, t_batch)
    if i % iter_per_epoch == 0:
        # 每一个epoch记录一次训练集与测试集的识别精度
        train_acc = network.accuracy(x_train, t_train)
        test_acc = network.accuracy(x_test, t_test)
        train_acc_list.append(train_acc)
        test_acc_list.append(test_acc)
        print("train acc, test acc | " + str(train_acc) + ", " + str(test_acc))
# 绘制训练集与测试集识别精度比较的图形
markers = {'train': 'o', 'test': 's'}
x = np.arange(len(train_acc_list))
plt.plot(x, train_acc_list, label='train acc')
plt.plot(x, test_acc_list, label='test acc', linestyle='--')
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
plt.legend(loc='lower right')
plt.show()


训练集与测试集的识别精度对比结果如下:

20201209152534390.png

图中,实线表示训练数据的识别精度,虚线表示测试数据的识别精度


如图所示,随着epoch的前进(神经网络训练的进行),我们发现使用训练数据和 测试数据评价的识别精度都提高了,并且,这两个识别精度基本上没有差异(两 条线基本重叠在一起)。因此,可以说这次的神经网络的训练过程中没有发生过拟合的现象,该神经网络是可以正常使用的。


以上便是本文的主要内容,通过比较训练集与测试集在不同训练轮次epoch下的识别精度,验证了该神经网络训练的准确性。


总结


至此,前面几篇文章完成了神经网络基础知识以及训练过程等内容。包括神经网络的起源、损失函数、激活函数、梯度计算、手动搭建神经网络的训练过程以及对于神经网络好坏评价的判断方式等,后续会对神经网络其他的相关知识进行进一步的介绍。

相关文章
|
5月前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
1029 56
|
6月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
861 27
|
6月前
|
网络协议 算法 Java
基于Reactor模型的高性能网络库之Tcpserver组件-上层调度器
TcpServer 是一个用于管理 TCP 连接的类,包含成员变量如事件循环(EventLoop)、连接池(ConnectionMap)和回调函数等。其主要功能包括监听新连接、设置线程池、启动服务器及处理连接事件。通过 Acceptor 接收新连接,并使用轮询算法将连接分配给子事件循环(subloop)进行读写操作。调用链从 start() 开始,经由线程池启动和 Acceptor 监听,最终由 TcpConnection 管理具体连接的事件处理。
243 2
|
6月前
基于Reactor模型的高性能网络库之Tcpconnection组件
TcpConnection 由 subLoop 管理 connfd,负责处理具体连接。它封装了连接套接字,通过 Channel 监听可读、可写、关闭、错误等
198 1
|
5月前
|
机器学习/深度学习 数据可视化 算法
深度学习模型结构复杂、参数众多,如何更直观地深入理解你的模型?
深度学习模型虽应用广泛,但其“黑箱”特性导致可解释性不足,尤其在金融、医疗等敏感领域,模型决策逻辑的透明性至关重要。本文聚焦深度学习可解释性中的可视化分析,介绍模型结构、特征、参数及输入激活的可视化方法,帮助理解模型行为、提升透明度,并推动其在关键领域的安全应用。
549 0
|
6月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
4月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
333 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
3月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
4月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
335 2
|
4月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
120 8

相关产品

  • 人工智能平台 PAI