algorithm--这个是算法的英文单词(四)

本文涉及的产品
系统运维管理,不限时长
简介: algorithm--这个是算法的英文单词

赫夫曼编码


基本介绍


  1. 赫夫曼编码也翻译为 哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式, 属于一种程序算法
  2. 赫夫曼编码是赫哈夫曼树在电讯通信中的经典的应用之一。
  3. 赫夫曼编码广泛地用于数据文件压缩。其压缩率通常在 20%~90%之间
  4. 赫夫曼码是可变字长编码(VLC)的一种。Huffman 于 1952 年提出一种编码方法,称之为最佳编码


原理剖析


定长编码


image.png


变长编码


image.png


赫夫曼编码


传输的  字符串  ,按照字符的出险次数出现权重


  1. i like like like java do you like a java
  2. d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9 // 各个字符对应的个数
  3. 按照上面字符出现的次数构建一颗赫夫曼树, 次数作为权值


步骤:


  1. 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
  2. 取出根节点权值最小的两颗二叉树
  3. 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
  4. 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,  就得到一颗赫夫曼树


image.png


根据赫夫曼树,给各个字符,规定编码 (前缀编码), 向左的路径为 0 向右的路径为 1 , 编码


如下:


image.png


按照上面的赫夫曼编码,我们的"i like like  like java do you like  a java" 字符串对应的编码为 (注意这里我们使用的无损压缩)


10101001101111011110100110111101111010011011110111101000011000011100110011110000110  
01111000100100100110111101111011100100001100001110

长度为:133


原来长度是 359 , 压缩了 (359-133) / 359 = 62.9%


此编码满足前缀编码, 即字符的编码都不能是其他字符编码的前缀。不会造成匹配的多义性


赫夫曼编码是无损处理方案


注意事项


image.png


最佳实践-数据压缩(创建赫夫曼树)


将给出的一段文本,比如 "i like like  like java do you like a java"  , 根据前面的讲的赫夫曼编码原理,对其进行数  据 压 缩 处 理  ,形 式 如  :

1010100110111101111010011011110111101001101111011110100001100001110011001111000011001111000100100100110111101111011100100001100001110


步骤 1:


根据赫夫曼编码压缩数据的原理,需要创建 "i like like like java do you like a java" 对应的赫夫曼树


思路:前面已经分析过了,而且我们已然讲过了构建赫夫曼树的具体实现。


 

public static Node createHuffManTree(List<Node> nodes) {
        while (nodes.size() > 1) {
            //首先从小到大排序 list
            Collections.sort(nodes);
            //    找到list中最小的子树
            Node leftnode = nodes.get(0);
            //找到倒数第二小的
            Node rightnode = nodes.get(1);
            Node parent = new Node(null, leftnode.wight + rightnode.wight);
            parent.left = leftnode;
            parent.right = rightnode;
            //    删除两个被处理过的子树
            nodes.remove(leftnode);
            nodes.remove(rightnode);
            //    之后将parent 加入到list
            //   这样遍历到最后只剩下一个节点 就是我们需要的赫夫曼树
            nodes.add(parent);
        }
        return nodes.get(0);
    }

最佳实践-数据压缩(生成赫夫曼编码和赫夫曼编码后的数据)


我们已经生成了 赫夫曼树, 下面我们继续完成任务


生成赫夫曼树对应的赫夫曼编码 , 如下表:


=01  a=100 d=11000 u=11001  e=1110  v=11011  i=101 y=11010 j=0010 k=1111 l=000 o=0011


使用赫夫曼编码来生成赫夫曼编码数据  ,即按照上面的赫夫曼编码,将"i like  like like  java do you like  a java"


字符串生成对应的编码数据, 形式如下:


1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100

思路:前面已经分析过了,而且我们讲过了生成赫夫曼编码的具体实现。


 

/* 生成赫夫曼树对应的赫夫曼编码
     * 思路 :
     * 1. 将赫夫曼编码存放在map<byte,string>的形式的map里
     * 2。在生成赫夫曼编码表示,需要去拼接一些路径  定一个一个 stringbuilder 存放叶子节点的路径
     * */
    static Map<Byte, String> huffmanCodes = new HashMap<>();
    //存放叶子节点的路径的 stringbuilder
    static StringBuilder stringBuilder = new StringBuilder();
    //为了调用方便 重载getcode
    public static Map<Byte, String> getCodes(Node root) {
        if (root == null) {
            return null;
        }
        //  处理左子树
        getCodes(root.left, "0", stringBuilder);
        //处理右子树
        getCodes(root.right, "1", stringBuilder);
        return huffmanCodes;
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 将传入的node节点的所有子节点的赫夫曼编码得到,并且放入huffmanCodes集合中
     * @date: 2022/2/12 15:07
     * @return: void
     * @param node          传入的节点
     * @param code          路径,左子节点是 0 右子节点事 1
     * @param stringBuilder 用于拼接路径
     */
    public static void getCodes(Node node, String code, StringBuilder stringBuilder) {
        StringBuilder stringBuilder1 = new StringBuilder(stringBuilder);
        //将code 加入到 string builder1
        stringBuilder1.append(code);
        if (node != null) {
            //    如果为null 不处理
            //判断是否为叶子结点
            if (node.data == null) {
                //如果data不为空那么代表非叶子节点
                //   向左继续递归
                getCodes(node.left, "0", stringBuilder1);
                //    向右边递归
                getCodes(node.right, "1", stringBuilder1);
            } else {
                //如果进入到这里说明是一个叶子结点
                //    存入到 huffmanCodes这个集合中
                huffmanCodes.put(node.data, stringBuilder1.toString());
            }
        }
    }


最佳实践-数据解压(使用赫夫曼编码解码)


使用赫夫曼编码来解码数据,具体要求是


  1. 前面我们得到了赫夫曼编码和对应的编码  byte[] , 即:[-88, -65, -56, -65, -56, -65, -55, 77  , -57, 6, -24, -14, -117, -4, -60, -90, 28]
  2. 现在要求使用赫夫曼编码, 进行解码,又重新得到原来的字符串"i like like like java do you like a java"
  3. 思路:解码过程,就是编码的一个逆向操作。


 

/**
     * @author 冷环渊 Doomwatcher
     * @context: 将一个byte 转成 一个二进制的字符串
     * @date: 2022/2/12 23:14
     * @param flag 标志是否需要不高位,如果是ture 表示需要补高位,如果是false表示不需要
     * @param b 传入的 byte
     * @return: java.lang.String 返回的b 对应的二进制的字符串(注意事按照补码返回)
     */
    public static String byteToBitString(boolean flag, byte b) {
        //使用变量保存 b
        int temp = b;
        //如果是正数我们还需要补高位
        if (flag) {
            //按位与 256 1 0000 0000| 00000 0001 => 1 0000 0001
            temp |= 256;
        }
        String str = Integer.toBinaryString(temp);
        if (flag) {
            return str.substring(str.length() - 8);
        } else {
            return str;
        }
    }
  /**
     * @author 冷环渊 Doomwatcher
     * @context: 完成对数据的解压
     * 思路:
     * 1. 其实这就是我们之前压缩思路的逆向,
     * 2.我们先需要将 byte数组形式的转成二进制的心态,
     * 3. 之后转成赫夫曼编码,之后转换成字符
     * @date: 2022/2/12 21:49
     * @param huffmanBytes 赫夫曼编码对应的byte数组
     * @param huffmanCodes 赫夫曼编码表
     * @return: void
     */
    public static byte[] decode(Map<Byte, String> huffmanCodes, byte[] huffmanBytes) {
        //1. 先得到huffmancodebytes 对应的 二进制字符串,如 1010100010111
        StringBuilder stringBuilder = new StringBuilder();
        //将byte 数组转成二进制字符串
        for (int i = 0; i < huffmanBytes.length; i++) {
            byte b = huffmanBytes[i];
            boolean flag = (i == huffmanBytes.length - 1);
            stringBuilder.append(byteToBitString(!flag, b));
        }
        //System.out.println("赫夫曼字节数组解码二进制=>" + stringBuilder.toString());
        //    按照置顶的赫夫曼编码把字符串进行解码
        //    把赫夫曼编码进行转换 a ->100 100->a
        Map<String, Byte> map = new HashMap<>();
        for (Map.Entry<Byte, String> stringByteEntry : huffmanCodes.entrySet()) {
            map.put(stringByteEntry.getValue(), stringByteEntry.getKey());
        }
        //创建一个集合 里面存放byte
        List<Byte> list = new ArrayList<>();
        //    i可以理解成为索引,扫描stringbuilder
        for (int i = 0; i < stringBuilder.length(); ) {
            //得到编码的计数器
            int count = 1;
            boolean flag = true;
            Byte b = null;
            while (flag) {
                //取出一个 ‘1’或者‘0’,i不动 让 count移动直到匹配到一个字符,递增取出
                String key = stringBuilder.substring(i, i + count);
                b = map.get(key);
                if (b == null) {
                    //  说明没有匹配到
                    count++;
                } else {
                    //匹配到就退出循环
                    flag = false;
                }
            }
            list.add(b);
            //匹配到之后 i 直接移动步长为count位,就可以继续匹配了,
            i += count;
        }
        //当for循环结束后我们的list存放了所有的字符
        //    之后把list 中的数据放入byte[]并且返回
        byte[] b = new byte[list.size()];
        for (int i = 0; i < b.length; i++) {
            b[i] = list.get(i);
        }
        return b;
    }


最佳实践-文件压缩


我们学习了通过赫夫曼编码对一个字符串进行编码和解码, 下面我们来完成对文件的压缩和解压, 具体要求:


给你一个图片文件,要求对其进行无损压缩, 看看压缩效果如何。


思路:读取文件-> 得到赫夫曼编码表 -> 完成压缩


 

/**
     * @author 冷环渊 Doomwatcher
     * @context: 编写方法 完成对压缩文件的解压
     * @date: 2022/2/13 0:33
     * @param zipFile 准备解压的文件路径
     * @param dstFile 将文件解压到什么路径
     * @return: void
     */
    public static void unZipFile(String zipFile, String dstFile) {
        //定义文件输入流
        InputStream is = null;
        //定义对象输入流
        ObjectInputStream ois = null;
        //输出流
        OutputStream os = null;
        try {
            //    创建文件输入流
            is = new FileInputStream(zipFile);
            //    创建对象输入流
            ois = new ObjectInputStream(is);
            byte[] huffmanbytes = (byte[]) ois.readObject();
            //    读取赫夫曼编码表
            Map<Byte, String> huffmanCodes = (Map<Byte, String>) ois.readObject();
            //    解码
            byte[] bytes = decode(huffmanCodes, huffmanbytes);
            //将byte 数组写入目标文件
            os = new FileOutputStream(dstFile);
            //    写数据到fstFile文件
            os.write(bytes);
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            try {
                os.close();
                ois.close();
                is.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }

最佳实践-文件解压(文件恢复)


具体要求:将前面压缩的文件,重新恢复成原来的文件。


思路:读取压缩文件(数据和赫夫曼编码表)-> 完成解压(文件恢复)


 

/**
     * @author 冷环渊 Doomwatcher
     * @context: 编写方法 完成对压缩文件的解压
     * @date: 2022/2/13 0:33
     * @param zipFile 准备解压的文件路径
     * @param dstFile 将文件解压到什么路径
     * @return: void
     */
    public static void unZipFile(String zipFile, String dstFile) {
        //定义文件输入流
        InputStream is = null;
        //定义对象输入流
        ObjectInputStream ois = null;
        //输出流
        OutputStream os = null;
        try {
            //    创建文件输入流
            is = new FileInputStream(zipFile);
            //    创建对象输入流
            ois = new ObjectInputStream(is);
            byte[] huffmanbytes = (byte[]) ois.readObject();
            //    读取赫夫曼编码表
            Map<Byte, String> huffmanCodes = (Map<Byte, String>) ois.readObject();
            //    解码
            byte[] bytes = decode(huffmanCodes, huffmanbytes);
            //将byte 数组写入目标文件
            os = new FileOutputStream(dstFile);
            //    写数据到fstFile文件
            os.write(bytes);
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            try {
                os.close();
                ois.close();
                is.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }


代码汇总


package com.hyc.DataStructure.huffmanCode;
import java.io.*;
import java.util.*;
/**
 * @projectName: DataStructure
 * @package: com.hyc.DataStructure.huffmanCode
 * @className: huffmanCodeDemo
 * @author: 冷环渊 doomwatcher
 * @description: TODO
 * @date: 2022/2/9 19:06
 * @version: 1.0
 */
public class huffmanCodeDemo {
    public static void main(String[] args) {
//        压缩文件测试
//        String srcfile = "D:\\JavaEngineer\\algorithm\\code\\DataStructure\\src.bmp";
//        String dstfile = "D:\\JavaEngineer\\algorithm\\code\\DataStructure\\srcdst.zip";
//        zipFile(srcfile, dstfile);
//        解压文件测试
        String zipfile = "D:\\\\JavaEngineer\\\\algorithm\\\\code\\\\DataStructure\\\\srcdst.zip";
        String dstFile = "D:\\\\JavaEngineer\\\\algorithm\\\\code\\\\DataStructure\\\\src1.bmp";
        unZipFile(zipfile, dstFile);
/*        String content = "i like like like java do you like a java";
        byte[] contentbytes = content.getBytes();
        System.out.println("压缩之前的长度 =>" + contentbytes.length); // 40
        byte[] huffmanCodesBytes = huffmanZip(contentbytes);
        System.out.println("压缩之后的长度 =>" + huffmanCodesBytes.length);
        byte[] decode = decode(huffmanCodes, huffmanCodesBytes);
        System.out.println("输出解码之后的字符串" + new String(decode));*/
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 编写方法 完成对压缩文件的解压
     * @date: 2022/2/13 0:33
     * @param zipFile 准备解压的文件路径
     * @param dstFile 将文件解压到什么路径
     * @return: void
     */
    public static void unZipFile(String zipFile, String dstFile) {
        //定义文件输入流
        InputStream is = null;
        //定义对象输入流
        ObjectInputStream ois = null;
        //输出流
        OutputStream os = null;
        try {
            //    创建文件输入流
            is = new FileInputStream(zipFile);
            //    创建对象输入流
            ois = new ObjectInputStream(is);
            byte[] huffmanbytes = (byte[]) ois.readObject();
            //    读取赫夫曼编码表
            Map<Byte, String> huffmanCodes = (Map<Byte, String>) ois.readObject();
            //    解码
            byte[] bytes = decode(huffmanCodes, huffmanbytes);
            //将byte 数组写入目标文件
            os = new FileOutputStream(dstFile);
            //    写数据到fstFile文件
            os.write(bytes);
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            try {
                os.close();
                ois.close();
                is.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 文件压缩
     * @date: 2022/2/13 0:17
     * @param srcFile 传入的希望压缩的文件的全路径
     * @param dstFile 压缩之后需要输出的文件路径
     * @return: void
     */
    public static void zipFile(String srcFile, String dstFile) {
        //    创建文件输出流
        //    创建文件输入流
        FileInputStream is = null;
        FileOutputStream os = null;
        ObjectOutputStream oos = null;
        try {
            is = new FileInputStream(srcFile);
            //    创建一个和源文件大小一样的byte数组 当做缓冲区
            byte[] bytes = new byte[is.available()];
            //    读取文件
            is.read(bytes);
            //获取到文件对应的赫夫曼编码
            byte[] huffmanBytes = huffmanZip(bytes);
            //    创建文件的输出流,存放压缩文件
            os = new FileOutputStream(dstFile);
            //    创建一个和文件输出流关联的objoutputstream
            oos = new ObjectOutputStream(os);
            //把赫夫曼编码后的字节数组写入压缩文件
            oos.writeObject(huffmanBytes);
            //这里我们用对象流的方式写入赫夫曼编码,目的是为了回复文件的时候使用
            oos.writeObject(huffmanCodes);
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            try {
                is.close();
                os.close();
                oos.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 完成对数据的解压
     * 思路:
     * 1. 其实这就是我们之前压缩思路的逆向,
     * 2.我们先需要将 byte数组形式的转成二进制的心态,
     * 3. 之后转成赫夫曼编码,之后转换成字符
     * @date: 2022/2/12 21:49
     * @param huffmanBytes 赫夫曼编码对应的byte数组
     * @param huffmanCodes 赫夫曼编码表
     * @return: void
     */
    public static byte[] decode(Map<Byte, String> huffmanCodes, byte[] huffmanBytes) {
        //1. 先得到huffmancodebytes 对应的 二进制字符串,如 1010100010111
        StringBuilder stringBuilder = new StringBuilder();
        //将byte 数组转成二进制字符串
        for (int i = 0; i < huffmanBytes.length; i++) {
            byte b = huffmanBytes[i];
            boolean flag = (i == huffmanBytes.length - 1);
            stringBuilder.append(byteToBitString(!flag, b));
        }
        //System.out.println("赫夫曼字节数组解码二进制=>" + stringBuilder.toString());
        //    按照置顶的赫夫曼编码把字符串进行解码
        //    把赫夫曼编码进行转换 a ->100 100->a
        Map<String, Byte> map = new HashMap<>();
        for (Map.Entry<Byte, String> stringByteEntry : huffmanCodes.entrySet()) {
            map.put(stringByteEntry.getValue(), stringByteEntry.getKey());
        }
        //创建一个集合 里面存放byte
        List<Byte> list = new ArrayList<>();
        //    i可以理解成为索引,扫描stringbuilder
        for (int i = 0; i < stringBuilder.length(); ) {
            //得到编码的计数器
            int count = 1;
            boolean flag = true;
            Byte b = null;
            while (flag) {
                //取出一个 ‘1’或者‘0’,i不动 让 count移动直到匹配到一个字符,递增取出
                String key = stringBuilder.substring(i, i + count);
                b = map.get(key);
                if (b == null) {
                    //  说明没有匹配到
                    count++;
                } else {
                    //匹配到就退出循环
                    flag = false;
                }
            }
            list.add(b);
            //匹配到之后 i 直接移动步长为count位,就可以继续匹配了,
            i += count;
        }
        //当for循环结束后我们的list存放了所有的字符
        //    之后把list 中的数据放入byte[]并且返回
        byte[] b = new byte[list.size()];
        for (int i = 0; i < b.length; i++) {
            b[i] = list.get(i);
        }
        return b;
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 将一个byte 转成 一个二进制的字符串
     * @date: 2022/2/12 23:14
     * @param flag 标志是否需要不高位,如果是ture 表示需要补高位,如果是false表示不需要
     * @param b 传入的 byte
     * @return: java.lang.String 返回的b 对应的二进制的字符串(注意事按照补码返回)
     */
    public static String byteToBitString(boolean flag, byte b) {
        //使用变量保存 b
        int temp = b;
        //如果是正数我们还需要补高位
        if (flag) {
            //按位与 256 1 0000 0000| 00000 0001 => 1 0000 0001
            temp |= 256;
        }
        String str = Integer.toBinaryString(temp);
        if (flag) {
            return str.substring(str.length() - 8);
        } else {
            return str;
        }
    }
    /**
     *
     * @author 冷环渊 Doomwatcher
     * @context: 封装 赫夫曼编码压缩
     * @date: 2022/2/12 20:12
     * @param bytes
     * @return: byte[]
     */
    public static byte[] huffmanZip(byte[] bytes) {
        List<Node> nodes = getNodes(bytes);
        Node huffManTreeroot = createHuffManTree(nodes);
        Map<Byte, String> codes = getCodes(huffManTreeroot);
        byte[] huffmanCodeBytes = zip(bytes, codes);
        return huffmanCodeBytes;
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 编写一个方法,将字符串转成对应的 Byte[] 数组,通过生成的哈夫曼编码表,返回一个赫夫曼编码压缩后的Byte[]
     * 举例子: string content = i like like like java do you like java
     * 返回的字符串应该是一大串 八位的byte
     * 比如 huffmanCodeBytes[0] = 10101000(补码) => byte[推导 推成反码 10101000 -1 => 10100111(反码)] 原码就是符号位不变,其他取反 [11011000]
     * @date: 2022/2/12 15:35
     * @param bytes        原始字符串对应的byte
     * @param huffmanCodes 生成赫夫曼编码的map
     * @return: java.lang.Byte[]
     */
    public static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) {
        //  首先利用 huffmanCode是将 bytes 转成赫夫曼编码的字符串
        StringBuilder stringBuilder = new StringBuilder();
        for (byte b : bytes) {
            stringBuilder.append(huffmanCodes.get(b));
        }
        //System.out.println(stringBuilder);
        //    将对应的字符串 转成 byte[]数组
        //    返回 数组 huffmancodeBytes的长度
        int len;
        if (stringBuilder.length() % 8 == 0) {
            len = stringBuilder.length() / 8;
        } else {
            len = stringBuilder.length() / 8 + 1;
        }
        //    创建存储压缩后的byte数组
        byte[] huffmanCodeBytes = new byte[len];
        int index = 0;
        for (int i = 0; i < stringBuilder.length(); i += 8) {
            String strByte;
            if (i + 8 > stringBuilder.length()) {
                //   进入这里代表后面的最后一位数 不够八位了
                strByte = stringBuilder.substring(i);
            } else {
                strByte = stringBuilder.substring(i, i + 8);
            }
            huffmanCodeBytes[index] = (byte) Integer.parseInt(strByte, 2);
            index++;
        }
        return huffmanCodeBytes;
    }
    /* 生成赫夫曼树对应的赫夫曼编码
     * 思路 :
     * 1. 将赫夫曼编码存放在map<byte,string>的形式的map里
     * 2。在生成赫夫曼编码表示,需要去拼接一些路径  定一个一个 stringbuilder 存放叶子节点的路径
     * */
    static Map<Byte, String> huffmanCodes = new HashMap<>();
    //存放叶子节点的路径的 stringbuilder
    static StringBuilder stringBuilder = new StringBuilder();
    //为了调用方便 重载getcode
    public static Map<Byte, String> getCodes(Node root) {
        if (root == null) {
            return null;
        }
        //  处理左子树
        getCodes(root.left, "0", stringBuilder);
        //处理右子树
        getCodes(root.right, "1", stringBuilder);
        return huffmanCodes;
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 将传入的node节点的所有子节点的赫夫曼编码得到,并且放入huffmanCodes集合中
     * @date: 2022/2/12 15:07
     * @return: void
     * @param node          传入的节点
     * @param code          路径,左子节点是 0 右子节点事 1
     * @param stringBuilder 用于拼接路径
     */
    public static void getCodes(Node node, String code, StringBuilder stringBuilder) {
        StringBuilder stringBuilder1 = new StringBuilder(stringBuilder);
        //将code 加入到 string builder1
        stringBuilder1.append(code);
        if (node != null) {
            //    如果为null 不处理
            //判断是否为叶子结点
            if (node.data == null) {
                //如果data不为空那么代表非叶子节点
                //   向左继续递归
                getCodes(node.left, "0", stringBuilder1);
                //    向右边递归
                getCodes(node.right, "1", stringBuilder1);
            } else {
                //如果进入到这里说明是一个叶子结点
                //    存入到 huffmanCodes这个集合中
                huffmanCodes.put(node.data, stringBuilder1.toString());
            }
        }
    }
    //前序遍历
    public static void PreOrder(Node node) {
        if (node != null) {
            node.PreOrder();
        } else {
            System.out.println("空树无法遍历");
        }
    }
    /**
     *
     * @author 冷环渊 Doomwatcher
     * @context: 用来生成每一个节点的出现次数的list集合
     * @date: 2022/2/10 2:40
     * @param bytes 存放每一个字母的数组
     * @return: java.util.List<com.hyc.DataStructure.huffmanCode.Node>  返回一个带着字母出现权重的list
     */
    public static List<Node> getNodes(byte[] bytes) {
        //    创建一个 arraylist
        ArrayList<Node> nodes = new ArrayList<>();
        //    遍历bytes 统计每一个bytes 出现的次数 用 map 来统计
        Map<Byte, Integer> counts = new HashMap<>();
        for (byte b : bytes) {
            Integer count = counts.get(b);
            if (count == null) {
                //    map 还没有这个字符 证明是第一次
                counts.put(b, 1);
            } else {
                //    进入到这里说明之前有加入过了
                counts.put(b, count + 1);
            }
        }
        //把每个键值对转换成一个 Node 对象 并且进入到Nodes集合
        //遍历map
        for (Map.Entry<Byte, Integer> entry : counts.entrySet()) {
            nodes.add(new Node(entry.getKey(), entry.getValue()));
        }
        return nodes;
    }
    public static Node createHuffManTree(List<Node> nodes) {
        while (nodes.size() > 1) {
            //首先从小到大排序 list
            Collections.sort(nodes);
            //    找到list中最小的子树
            Node leftnode = nodes.get(0);
            //找到倒数第二小的
            Node rightnode = nodes.get(1);
            Node parent = new Node(null, leftnode.wight + rightnode.wight);
            parent.left = leftnode;
            parent.right = rightnode;
            //    删除两个被处理过的子树
            nodes.remove(leftnode);
            nodes.remove(rightnode);
            //    之后将parent 加入到list
            //   这样遍历到最后只剩下一个节点 就是我们需要的赫夫曼树
            nodes.add(parent);
        }
        return nodes.get(0);
    }
}
class Node implements Comparable<Node> {
    //用于存放字符的ascll值
    Byte data;
    //出现的次数 权重
    int wight;
    Node left;
    Node right;
    public Node(Byte data, int wight) {
        this.data = data;
        this.wight = wight;
    }
    @Override
    public String toString() {
        return "Node{" +
                "data=" + data +
                ", wight=" + wight +
                '}';
    }
    //    前序遍历
    public void PreOrder() {
        System.out.println(this);
        if (this.left != null) {
            this.left.PreOrder();
        }
        if (this.right != null) {
            this.right.PreOrder();
        }
    }
    @Override
    public int compareTo(Node o) {
        return this.wight - o.wight;
    }
}

赫夫曼编码压缩文件注意事项


  1. 如果文件本身就是经过压缩处理的,那么使用赫夫曼编码再压缩效率不会有明显变化, 比如视频,ppt 等等文件  [举例压一个 .ppt]
  2. 赫夫曼编码是按字节来处理的,因此可以处理所有的文件(二进制文件、文本文件) [举例压一个.xml 文件]
  3. 如果一个文件中的内容,重复的数据不多,压缩效果也不会很明显.


二叉排序树


先看一个需求:


给你一个数列  (7, 3, 10, 12, 5, 1, 9),要求能够高效的完成对数据的查询和添加


使用数组


数组未排序, 优点:直接在数组尾添加,速度快。 缺点:查找速度慢.


数组排序,优点:可以使用二分查找,查找速度快,缺点:为了保证数组有序,在添加新数据时,找到插入位


置后,后面的数据需整体移动,速度慢。


链式存储-链表


不管链表是否有序,查找速度都慢,添加数据速度比数组快,不需要数据整体移动。


二叉排序树介绍


二叉排序树:BST:  (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当 前节点的值小,右子节点的值比当前节点的值大。


特别声明


特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点


比如针对前面的数据  (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:


image.png


二叉排序树创建和遍历


一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如:  数组为 Array(7,  3, 10, 12, 5, 1, 9) , 创


建成对应的二叉排序树为 :


image.png


二叉排序树的删除


二叉排序树的删除情况比较复杂,有下面三种情况需要考虑


  1. 删除叶子节点 (比如:2, 5, 9, 12)
  2. 删除只有一颗子树的节点 (比如:1)
  3. 删除有两颗子树的节点. (比如:7, 3,10 )


image.png


对删除结点的各种情况的思路分析:


第一种情况:  删除叶子节点  (比如:2,  5, 9, 12)


思路:


  1. 需求先去找到要删除的结点 targetNode
  2. 找到 targetNode 的 父结点 parent
  3. 确定 targetNode 是 parent 的左子结点 还是右子结点
  4. 根据前面的情况来对应删除


左子结点 parent.left = null


右子结点 parent.right = null;


第二种情况: 删除只有一颗子树的节点 比如 1


思路 :


  1. 需求先去找到要删除的结点 targetNode
  2. 找到 targetNode 的 父结点 parent
  3. 确定 targetNode 的子结点是左子结点还是右子结点
  4. targetNode 是 parent 的左子结点还是右子结点
  5. 如果 targetNode 有左子结点
  1. 如果 targetNode 是 parent 的左子结点  parent.left =  targetNode.left;
  2. 如果  targetNode  是 parent  的右子结点  parent.right  = targetNode.left;
  1. 如果 targetNode 有右子结点
  1. 如果 targetNode 是 parent 的左子结点  parent.left = targetNode.right
  2. 如果  targetNode  是 parent  的右子结点  parent.right  = targetNode.right


情况三  : 删除有两颗子树的节点. (比如:7, 3,10 )


思路  :


  1. 需求先去找到要删除的结点 targetNode
  2. 找到 targetNode 的 父结点 parent
  3. 从 targetNode 的右子树找到最小的结点
  4. 用一个临时变量,将 最小结点的值保存 temp = 11
  5. 删除该最小结点
  6. targetNode.value = temp


二叉排序树代码实现


package com.hyc.DataStructure.binarysorttree;
/**
 * @projectName: DataStructure
 * @package: com.hyc.DataStructure.binarysorttree
 * @className: BinarySortDemo
 * @author: 冷环渊 doomwatcher
 * @description: TODO
 * @date: 2022/2/15 16:33
 * @version: 1.0
 */
public class BinarySortDemo {
    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        for (int i = 0; i < arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        //    中序要遍历
        binarySortTree.infixOrder();
        //    测试删除节点
        binarySortTree.delNode(2);
        binarySortTree.delNode(7);
        binarySortTree.delNode(3);
        binarySortTree.delNode(12);
        binarySortTree.delNode(5);
        binarySortTree.delNode(1);
        binarySortTree.delNode(9);
        binarySortTree.delNode(10);
        System.out.println("删除节点后");
        //    中序要遍历
        binarySortTree.infixOrder();
    }
}
class BinarySortTree {
    private Node root;
    //查找要删除的节点
    public Node search(int value) {
        if (root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }
    //查找父节点·
    public Node searchParent(int value) {
        if (root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }
    //删除节点方法
    public void delNode(int value) {
        if (root == null) {
            return;
        } else {
            //    需要先去找到要删除的节点,targetNode
            Node targetNode = search(value);
            //    如果没有找到要删除的节点
            if (targetNode == null) {
                return;
            }
            //  如果我们发现当前这个颗树 只有一个节点
            if (root.left == null && root.right == null) {
                root = null;
                return;
            }
            //    找到targetNode的父节点
            Node parent = searchParent(value);
            //    如果需要删除的节点是叶子节点
            if (targetNode.left == null && targetNode.right == null) {
                //    判断targetNode是父节点的左子节点还是右子节点
                if (parent.left != null && parent.left.value == value) {
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) {
                //    删除有两颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
            } else {
                //    删除有一颗子树
                //    如果要删除的节点有左子节点
                if (targetNode.left != null) {
                    //判断 parent 的非空判断
                    if (parent != null) {
                        //    如果targetNode是Parent的左子节点
                        if (parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else {
                            //targentNode 是parent右子节点
                            parent.right = targetNode.left;
                        }
                    } else {
                        root = targetNode.left;
                    }
                } else {
                    if (parent != null) {
                        //    如果要删除的节点有右子节点
                        //    如果targetNode 是parent的右子节点
                        if (parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else {
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }
            }
        }
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context:
     * 返回的以node为根节点的二叉树的最小节点值
     * 删除node 为根节点的二叉排序树的最小节点
     * @date: 2022/2/17 22:19
     * @param node 传入的节点 (当前二叉排序树树的根节点)
     * @return: int 返回的以node为根节点的二叉排序树的最小节点值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        //    循环查找左节点 就会找到最小值
        while (target.left != null) {
            target = target.left;
        }
        //这个target就指向了最小的节点
        //删除最小节点
        delNode(target.value);
        return target.value;
    }
    //    添加节点的方法
    public void add(Node node) {
        //如果能空的话
        if (root == null) {
            root = node;
        } else {
            root.add(node);
        }
    }
    //    中序遍历
    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("空树 无法遍历");
        }
    }
}
class Node {
    int value;
    Node left;
    Node right;
    public Node(int value) {
        this.value = value;
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context:
     * 找到想要查到要删除的节点
     * @date: 2022/2/17 14:15
     * @param value 想要删除的节点的值
     * @return: com.hyc.DataStructure.binarysorttree.Node 如果找到了就返回节点,如果没找到那就返回null
     */
    public Node search(int value) {
        if (value == this.value) {
            //如果相同就返回自己
            return this;
        } else if (value < this.value) {
            //如果查找的值 小于当前节点就向左子树递归查找
            if (this.left == null) {
                return null;
            }
            return this.left.search(value);
        } else {
            //    如果查找的值不下节点,向右子树递归查找
            if (this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 查找要删除节点的父节点
     * @date: 2022/2/17 14:23
     * @param value value 要找的节点值
     * @return: com.hyc.DataStructure.binarysorttree.Node 返回的事要删除的节点
     */
    public Node searchParent(int value) {
        //   判断当前节点的两个子节点的值是不是等于我们要查找的值,如果是的话当前节点就是我们要寻找的父节点
        if ((this.left != null && this.left.value == value) ||
                (this.right != null && this.right.value == value)) {
            return this;
        } else {
            //    如果查找的值小于当前的节点值,并且当前节点的左子节点不等于空
            if (value < this.value && this.left != null) {
                //向左子树递归查找
                return this.left.searchParent(value);
            } else if (value >= this.value && this.right != null) {
                //向右子树递归查找
                return this.right.searchParent(value);
            } else {
                //没有找到
                return null;
            }
        }
    }
    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }
    public void add(Node node) {
        if (node == null) {
            return;
        }
        //    判断传入接待你值是否大于当前节点
        if (node.value < this.value) {
            //如果当前节点左子节点为null
            if (this.left == null) {
                this.left = node;
            } else {
                this.left.add(node);
            }
        } else {
            //    判断节点如果大于当前节点的值
            if (this.right == null) {
                this.right = node;
            } else {
                this.right.add(node);
            }
        }
    }
    //中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }
}

平衡二叉树(AVL 树)


给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在. :


  1. 左子树全部为空,从形式上看,更像一个单链表.
  2. 插入速度没有影响
  3. 查询速度明显降低(因为需要依次比较), 不能发挥 BST  的优势,因为每次还需要比较左子树,其查询速度比


解决方案-平衡二叉树(AVL)


基本介绍


  1. 平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为 AVL 树, 可以保证查询效率较高。
  2. 具有以下特点:它是一  棵空树或它的左右两个子树的高度差的绝对值不超过  1,并且左右两个子树都是一棵  平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。
  3. 举例说明, 看看下面哪些 AVL 树, 为什么?


image.png


应用案例-单旋转(左旋转)


给你一个数列,创建出对应的平衡二叉树.数列 {4,3,6,5,7,8}


image.png


左旋转代码


 

//左旋转方法
    public void leftRotate() {
        // 创建新节点 以当前节点的值
        Node newnode = new Node(value);
        //    把新节点的左子树这只成当前节点的左子树
        newnode.left = left;
        //    把新节点的右子树设置成当前节点的右子树的左子树
        newnode.right = right.left;
        //把当前节点的值 替换成右子节点的值
        value = right.value;
        //    把当前节点右子树设置成下一个节点的右子树
        right = right.right;
        //    把当前节点的左子树设置成新的节点
        left = newnode;
    }

应用案例-单旋转(右旋转)


给你一个数列,创建出对应的平衡二叉树.数列 {10,12, 8, 9, 7, 6}


image.png


右旋转代码


 

//右旋转方法
    public void rightRotate() {
        Node newnode = new Node(value);
        newnode.right = right;
        newnode.left = left.right;
        value = left.value;
        left = left.left;
        right = newnode;
    }


应用案例-双旋转


前面的两个数列,进行单旋转(即一次旋转)就可以将非平衡二叉树转成平衡二叉树,但是在某些情况下,单旋转  不能完成平衡二叉树的转换。比如数列


int[] arr = { 10, 11, 7, 6, 8, 9 }; 运行原来的代码可以看到,并没有转成 AVL 树.


int[] arr = {2,1,6,5,7,3}; // 运行原来的代码可以看到,并没有转成 AVL 树


image.png


  1. 当符号右旋转的条件时
  2. 如果它的左子树的右子树高度大于它的左子树的高度
  3. 先对当前这个结点的左节点进行左旋转
  4. 在对当前结点进行右旋转的操作即可


代码汇总


package com.hyc.DataStructure.AVL;
/**
 * @projectName: DataStructure
 * @package: com.hyc.DataStructure.AVL
 * @className: avlTreeDemo
 * @author: 冷环渊 doomwatcher
 * @description: TODO
 * @date: 2022/2/18 23:30
 * @version: 1.0
 */
public class avlTreeDemo {
    public static void main(String[] args) {
        //左旋转demo实例
        //int[] arr = {4, 3, 6, 5, 7, 8};
        //右旋转demo实例
        int[] arr = {10, 12, 8, 9, 7, 6};
        //int[] arr = {10, 11, 7, 6, 8, 9};
        //创建一个 AVLTree对象
        AVLTree avlTree = new AVLTree();
        //添加结点
        for (int i = 0; i < arr.length; i++) {
            avlTree.add(new Node(arr[i]));
        }
        //遍历
        System.out.println("中序遍历");
        avlTree.infixOrder();
        System.out.println("在平衡处理~~");
        System.out.println("树的高度=" + avlTree.getRoot().height()); //3
        System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2
        System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2
        System.out.println("当前的根结点=" + avlTree.getRoot());//8
    }
}
class AVLTree {
    private Node root;
    public Node getRoot() {
        return root;
    }
    public void setRoot(Node root) {
        this.root = root;
    }
    //查找要删除的节点
    public Node search(int value) {
        if (root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }
    //查找父节点·
    public Node searchParent(int value) {
        if (root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }
    //删除节点方法
    public void delNode(int value) {
        if (root == null) {
            return;
        } else {
            //    需要先去找到要删除的节点,targetNode
            Node targetNode = search(value);
            //    如果没有找到要删除的节点
            if (targetNode == null) {
                return;
            }
            //  如果我们发现当前这个颗树 只有一个节点
            if (root.left == null && root.right == null) {
                root = null;
                return;
            }
            //    找到targetNode的父节点
            Node parent = searchParent(value);
            //    如果需要删除的节点是叶子节点
            if (targetNode.left == null && targetNode.right == null) {
                //    判断targetNode是父节点的左子节点还是右子节点
                if (parent.left != null && parent.left.value == value) {
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) {
                //    删除有两颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
            } else {
                //    删除有一颗子树
                //    如果要删除的节点有左子节点
                if (targetNode.left != null) {
                    //判断 parent 的非空判断
                    if (parent != null) {
                        //    如果targetNode是Parent的左子节点
                        if (parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else {
                            //targentNode 是parent右子节点
                            parent.right = targetNode.left;
                        }
                    } else {
                        root = targetNode.left;
                    }
                } else {
                    if (parent != null) {
                        //    如果要删除的节点有右子节点
                        //    如果targetNode 是parent的右子节点
                        if (parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else {
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }
            }
        }
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context:
     * 返回的以node为根节点的二叉树的最小节点值
     * 删除node 为根节点的二叉排序树的最小节点
     * @date: 2022/2/17 22:19
     * @param node 传入的节点 (当前二叉排序树树的根节点)
     * @return: int 返回的以node为根节点的二叉排序树的最小节点值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        //    循环查找左节点 就会找到最小值
        while (target.left != null) {
            target = target.left;
        }
        //这个target就指向了最小的节点
        //删除最小节点
        delNode(target.value);
        return target.value;
    }
    //    添加节点的方法
    public void add(Node node) {
        //如果能空的话
        if (root == null) {
            root = node;
        } else {
            root.add(node);
        }
    }
    //    中序遍历
    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("空树 无法遍历");
        }
    }
}
class Node {
    int value;
    Node left;
    Node right;
    public Node(int value) {
        this.value = value;
    }
    //左旋转方法
    public void leftRotate() {
        // 创建新节点 以当前节点的值
        Node newnode = new Node(value);
        //    把新节点的左子树这只成当前节点的左子树
        newnode.left = left;
        //    把新节点的右子树设置成当前节点的右子树的左子树
        newnode.right = right.left;
        //把当前节点的值 替换成右子节点的值
        value = right.value;
        //    把当前节点右子树设置成下一个节点的右子树
        right = right.right;
        //    把当前节点的左子树设置成新的节点
        left = newnode;
    }
    //右旋转方法
    public void rightRotate() {
        Node newnode = new Node(value);
        newnode.right = right;
        newnode.left = left.right;
        value = left.value;
        left = left.left;
        right = newnode;
    }
    //返回左子树的高度
    public int leftHeight() {
        if (left == null) {
            return 0;
        }
        return left.height();
    }
    //返回右子树的高度
    public int rightHeight() {
        if (right == null) {
            return 0;
        }
        return right.height();
    }
    public int height() {
        //加一是因为需要算上当前节点
        return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context:
     * 找到想要查到要删除的节点
     * @date: 2022/2/17 14:15
     * @param value 想要删除的节点的值
     * @return: Node 如果找到了就返回节点,如果没找到那就返回null
     */
    public Node search(int value) {
        if (value == this.value) {
            //如果相同就返回自己
            return this;
        } else if (value < this.value) {
            //如果查找的值 小于当前节点就向左子树递归查找
            if (this.left == null) {
                return null;
            }
            return this.left.search(value);
        } else {
            //    如果查找的值不下节点,向右子树递归查找
            if (this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 查找要删除节点的父节点
     * @date: 2022/2/17 14:23
     * @param value value 要找的节点值
     * @return: Node 返回的事要删除的节点
     */
    public Node searchParent(int value) {
        //   判断当前节点的两个子节点的值是不是等于我们要查找的值,如果是的话当前节点就是我们要寻找的父节点
        if ((this.left != null && this.left.value == value) ||
                (this.right != null && this.right.value == value)) {
            return this;
        } else {
            //    如果查找的值小于当前的节点值,并且当前节点的左子节点不等于空
            if (value < this.value && this.left != null) {
                //向左子树递归查找
                return this.left.searchParent(value);
            } else if (value >= this.value && this.right != null) {
                //向右子树递归查找
                return this.right.searchParent(value);
            } else {
                //没有找到
                return null;
            }
        }
    }
    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }
    public void add(Node node) {
        if (node == null) {
            return;
        }
        //    判断传入接待你值是否大于当前节点
        if (node.value < this.value) {
            //如果当前节点左子节点为null
            if (this.left == null) {
                this.left = node;
            } else {
                this.left.add(node);
            }
        } else {
            //    判断节点如果大于当前节点的值
            if (this.right == null) {
                this.right = node;
            } else {
                this.right.add(node);
            }
        }
        //    当前添加玩一个节点之后  判断( 右子树的高度 - 左子树的高度 >1 )就代表需要左旋转
        if (rightHeight() - leftHeight() > 1) {
            //如果他的右子树的左子树高度大于它的右子树的右子树的高度
            if (right != null && right.leftHeight() > right.leftHeight()) {
                //    先对右子节点,进行右旋转
                right.rightRotate();
                leftHeight();
            } else {
                //    直接进行左旋转即可
                leftRotate();
            }
            return;
        }
        //    当添加完一个节点后,如果(左子树的高度-右子树的高度)>1 右旋转
        if (leftHeight() - rightHeight() > 1) {
            if (left != null && left.rightHeight() > left.leftHeight()) {
                // 先对当前节点的左结点(左子树) - 》左旋转
                left.leftRotate();
                //再对当前节点进行右旋转
                rightRotate();
            } else {
                //直接进行右旋转即可
                rightRotate();
            }
        }
    }
    //中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }
}

多路查找树


二叉树与 B 树


二叉树的问题分析


image.png


  1. 二叉树需要加载到内存的,如果二叉树的节点少,没有什么问题,但是如果二叉树的节点很多(比如 1 亿), 就  存在如下问题:
  2. 问题 1:在构建二叉树时,需要多次进行 i/o 操作(海量数据存在数据库或文件中),节点海量,构建二叉树时,  速度有影响
  3. 问题 2:节点海量,也会造成二叉树的高度很大,会降低操作速度


多叉树


  1. 在二叉树中,每个节点有数据项,最多有两个子节点。如果允许每个节点可以有更多的数据项和更多的子节点,  就是多叉树(multiway tree)
  2. 后面我们讲解的 2-3 树,2-3-4 树就是多叉树,多叉树通过重新组织节点,减少树的高度,能对二叉树进行优化。


2-3树是一种多叉树


image.png


B 树的基本介绍


B 树通过重新组织节点,降低树的高度,并且减少 i/o 读写次数来提升效率。


image.png


  1. 如图 B 树通过重新组织节点, 降低了树的高度.
  2. 文件系统及数据库系统的设计者利用了磁盘预读原理,将一个节点的大小设为等于一个页(页得大小通常为 4k),  这样每个节点只需要一次 I/O 就可以完全载入
  3. 将树的度 M 设置为 1024,在 600 亿个元素中最多只需要 4 次 I/O 操作就可以读取到想要的元素, B 树(B+)广泛  应用于文件存储系统以及数据库系统中


2-3 树


2-3 树是最简单的 B 树结构, 具有如下特点:


  1. 2-3 树的所有叶子节点都在同一层.(只要是 B 树都满足这个条件)
  2. 有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点.
  3. 有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点.
  4. 2-3 树是由二节点和三节点构成的树。


2-3 树应用案例


将数列{16, 24, 12, 32, 14, 26, 34, 10, 8, 28, 38, 20} 构建成 2-3 树,并保证数据插入的大小顺序。(演示一下构建 2-3  树的过程.)


image.png


插入规则:


  1. 2-3 树的所有叶子节点都在同一层.(只要是 B 树都满足这个条件)
  2. 有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点.
  3. 有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点
  4. 当按照规则插入一个数到某个节点时,不能满足上面三个要求,就需要拆,先向上拆,如果上层满,则拆本层,  拆后仍然需要满足上面 3 个条件。
  5. 对于三节点的子树的值大小仍然遵守(BST 二叉排序树)的规则


除了 23 树,还有 234 树等,概念和 23 树类似,也是一种 B 树。


image.png


B 树、B+树和 B*树


B-tree 树即 B 树,B 即 Balanced,平衡的意思。有人把 B-tree 翻译成 B-树,容易让人产生误解。会以为 B-树  是一种树,而 B 树又是另一种树。实际上,B-tree 就是指的 B 树。


前面已经介绍了 2-3 树和 2-3-4 树,他们就是 B 树(英语:B-tree 也写成 B-树),这里我们再做一个说明,我们在学  习 Mysql 时,经常听到说某种类型的索引是基于 B 树或者 B+树的,如图:


image.png


对上图的说明:


  1. B 树的阶:节点的最多子节点个数。比如 2-3 树的阶是 3,2-3-4 树的阶是 4
  2. B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询  关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点
  3. 关键字集合分布在整颗树中, 即叶子节点和非叶子节点都存放数据
  4. 搜索有可能在非叶子结点结束
  5. 其搜索性能等价于在关键字全集内做一次二分查找


B+树的介绍


B+树是 B 树的变体,也是一种多路搜索树。


image.png


对上图的说明:


  1. B+树的搜索与 B 树也基本相同,区别是 B+树只有达到叶子结点才命中(B 树可以在非叶子结点命中),其性  能也等价于在关键字全集做一次二分查找
  2. 所有关键字都出现在叶子结点的链表中(即数据只能在叶子节点【也叫稠密索引】),且链表中的关键字(数据)  恰好是有序的。
  3. 不可能在非叶子结点命中
  4. 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层
  5. 更适合文件索引系统
  6. B 树和 B+树各有自己的应用场景,不能说 B+树完全比 B 树好,反之亦然


B*树的介绍


B*树是 B+树的变体,在 B+树的非根和非叶子结点再增加指向兄弟的指针。


image.png


B*树的说明:


  1. B树定义了非叶子结点关键字个数至少为(2/3)M,即块的最低使用率为 2/3,而 B+树的块的最低使用率为的


1/2。


  1. 从第 1 个特点我们可以看出,B*树分配新结点的概率比 B+树要低,空间使用率更高


Trie树


又称为: 前缀树,字典树


取名来自 retrieval


什么是Trie树!??


比如我们一串字符串需要检查拼写错误


数据: code cook Five File Fat


根据匹配这串字符生成的字典树


image.png


特点:


  1. 根节点不包括字符,除去根节点外 每个节点只包含一个字符
  2. 从根节点到叶子节点,路径上经过的字符,对应的字符串
  3. 每个节点的子节点包含不同的字符(相同字符在下一层节点分裂)


此时演示特点三的情况


image.png


插入规则:


  1. 先查看节点是否存在,存在i向下遍历,不存咋创建新的节点


查找规则:


  1. 从根节点开始遍历,如查找goodbye Good 找到前缀字符,但是此时字典树遍历完成,而单词并没有完成,结果任然不存在


删除规则


  1. 先要遍历出当前字符串路径,从叶子节点向上删除,除去叶子节点外的节点,如果有其他节点,此节点保留,删除子树
目录
相关文章
|
8月前
|
机器学习/深度学习 算法 程序员
C++ Algorithm 库 算法秘境探索(Algorithm Wonderland Exploration)
C++ Algorithm 库 算法秘境探索(Algorithm Wonderland Exploration)
270 1
|
5月前
|
机器学习/深度学习 算法 网络性能优化
【博士每天一篇文献-算法】A brain-inspired algorithm that mitigates catastrophic forgetting of
本文提出了一种受大脑启发的神经调节辅助信用分配(NACA)算法,该算法通过模拟大脑中的神经调节机制,有效减轻了人工神经网络(ANNs)和脉冲神经网络(SNNs)在学习过程中的灾难性遗忘问题,并具有较低的计算成本。
67 1
|
5月前
|
算法 容器
【算法】滑动窗口——串联所有单词的子串
【算法】滑动窗口——串联所有单词的子串
|
7月前
|
算法 Java 计算机视觉
图像处理之泛洪填充算法(Flood Fill Algorithm)
图像处理之泛洪填充算法(Flood Fill Algorithm)
335 6
|
7月前
|
存储 SQL 算法
LeetCode题58: 5种算法实现最后一个单词的长度【python】
LeetCode题58: 5种算法实现最后一个单词的长度【python】
|
7月前
|
算法
【经典LeetCode算法题目专栏分类】【第3期】回溯问题系列:单词搜索、N皇后问题、判断有效数独、解数独
【经典LeetCode算法题目专栏分类】【第3期】回溯问题系列:单词搜索、N皇后问题、判断有效数独、解数独
|
7月前
|
算法 计算机视觉
图像处理之线性插值旋转算法(biline-interpolation rotate algorithm)
图像处理之线性插值旋转算法(biline-interpolation rotate algorithm)
73 0
|
7月前
|
算法 计算机视觉
图像处理之简单脸谱检测算法(Simple Face Detection Algorithm)
图像处理之简单脸谱检测算法(Simple Face Detection Algorithm)
43 0
|
7月前
|
算法
算法特训,AB5 .点击消除BC.149简写单词牛客.除2!牛客.Fibonacci数列
算法特训,AB5 .点击消除BC.149简写单词牛客.除2!牛客.Fibonacci数列
|
7月前
|
算法 Java Go
【经典算法】LeetCode 58.最后一个单词的长度(Java/C/Python3/Go实现含注释说明,Easy)
【经典算法】LeetCode 58.最后一个单词的长度(Java/C/Python3/Go实现含注释说明,Easy)
42 0

热门文章

最新文章