【智能算法】FA萤火虫算法求解无约束多元函数最值(Java代码实现)

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 【智能算法】FA萤火虫算法求解无约束多元函数最值(Java代码实现)

@[toc]


前言

本文以求解二元函数最小值为例,如果需要求解多元函数,只需要修改以下变量即可:

  • varNum:变量维度数
  • ub和lb:变量的上下界
  • vMaxArr:每个维度的搜索速度限制

优化目标

目标:在变量区间范围最小化 Z = x^2 + y^2 - xy - 10x - 4y +60

求解结果

变量取值为:[8.00013867452009, 6.000077817430381]
最优解为:8.000000014494901

搜索过程可视化

在这里插入图片描述

Java代码

import java.util.Arrays;
import java.util.Random;

/**
 * @Author:WSKH
 * @ClassName:FA_Solve
 * @ClassType:
 * @Description:
 * @Date:2022/6/8/18:26
 * @Email:1187560563@qq.com
 * @Blog:https://blog.csdn.net/weixin_51545953?type=blog
 */
public class FA_Solve {

    // 萤火虫对象
    class Firefly {
        // 当前萤火虫的坐标(自变量数组)
        double[] curVars;
        // 当前自变量对应的目标函数值
        double curObjValue;
        // 适应度(解决最小化问题,所以适应度为目标函数值的倒数)
        double fit;

        // 全参构造
        public Firefly(double[] curVars, double curObjValue, double fit) {
            this.curVars = curVars;
            this.curObjValue = curObjValue;
            this.fit = fit;
        }
    }

    // 算法参数
    // 变量个数
    int varNum = 2;
    // 最大迭代次数
    int maxGen = 500;
    // 萤火虫群中萤火虫的个数
    int fireflyNum = 200;
    // 光吸收系数
    double gamma = 0.3;
    // 步长数组(各个维度的步长)
    double[] stepArr = new double[]{1.2, 1.2};
    // 变量的上下界
    double[] ub = new double[]{1000, 1000};
    double[] lb = new double[]{-1000, -1000};
    // 随机数对象
    Random random = new Random();
    // 萤火虫群
    Firefly[] fireflies;
    // 最佳的萤火虫
    Firefly bestFirefly;
    // 记录迭代过程
    public double[][][] positionArr;
    // 当前记录的行数
    int r;

    // 求解主函数
    public void solve() {
        // 初始化萤火虫群
        initFireflyes();
        // 开始迭代
        for (int t = 0; t < maxGen; t++) {
            for (int i = 0; i < fireflyNum; i++) {
                for (int j = 0; j < fireflyNum; j++) {
                    double light = getLight(getDistance(fireflies[i], fireflies[j]), fireflies[j].fit);
                    if (i != j && fireflies[i].fit < fireflies[j].fit) {
                        Firefly tempFirefly = copyFirefly(fireflies[i]);
                        for (int m = 0; m < varNum; m++) {
                            double move = light * (fireflies[j].curVars[m] - fireflies[i].curVars[m]) + stepArr[m] * (random.nextDouble()-0.5);
                            moveFirefly(tempFirefly, m,move);
                        }
                        updateFireFly(tempFirefly);
                        if(tempFirefly.fit > fireflies[i].fit){
                            fireflies[i] = tempFirefly;
                            if(bestFirefly.fit < tempFirefly.fit){
                                bestFirefly = copyFirefly(tempFirefly);
                            }
                        }
                    }
                }
            }
            report();
        }
        // 输出最好的结果
        System.out.println("变量取值为:" + Arrays.toString(bestFirefly.curVars));
        System.out.println("最优解为:" + bestFirefly.curObjValue);
    }

    // 记录
    void report() {
        for (int i = 0; i < fireflies.length; i++) {
            for (int j = 0; j < varNum; j++) {
                positionArr[r][i][j] = fireflies[i].curVars[j];
            }
        }
        r++;
    }

    // 获取光强
    double getLight(double r, double fit) {
        return fit * Math.exp(-gamma * Math.pow(r, 2));
    }

    // 求两个萤火虫之间的距离
    double getDistance(Firefly f1, Firefly f2) {
        double dis = 0d;
        for (int i = 0; i < varNum; i++) {
            dis += Math.pow(f1.curVars[i] - f2.curVars[i], 2);
        }
        return Math.sqrt(dis);
    }

    // 初始化萤火虫群
    private void initFireflyes() {
        positionArr = new double[maxGen][fireflyNum][varNum];
        fireflies = new Firefly[fireflyNum];
        for (int i = 0; i < fireflyNum; i++) {
            fireflies[i] = getRandomFirefly();
            if (i == 0 || bestFirefly.fit < fireflies[i].fit) {
                bestFirefly = copyFirefly(fireflies[i]);
            }
        }
    }

    // 控制萤火虫在第m个维度上移动n个距离
    public void moveFirefly(Firefly firefly, int m, double n) {
        // 移动
        firefly.curVars[m] += n;
        // 超出定义域的判断
        if (firefly.curVars[m] < lb[m]) {
            firefly.curVars[m] = lb[m];
        }
        if (firefly.curVars[m] > ub[m]) {
            firefly.curVars[m] = ub[m];
        }
    }

    // 更新萤火虫信息
    void updateFireFly(Firefly firefly) {
        double objValue = getObjValue(firefly.curVars);
        firefly.curObjValue = objValue;
        firefly.fit = 1 / objValue;
    }

    // 获取一个随机生成的萤火虫
    Firefly getRandomFirefly() {
        double[] vars = new double[varNum];
        for (int j = 0; j < vars.length; j++) {
            vars[j] = lb[j] + random.nextDouble() * (ub[j] - lb[j]);
        }
        double objValue = getObjValue(vars);
        return new Firefly(vars.clone(), objValue, 1 / objValue);
    }

    /**
     * @param vars 自变量数组
     * @return 返回目标函数值
     */
    public double getObjValue(double[] vars) {
        //目标:在变量区间范围最小化 Z = x^2 + y^2 - xy - 10x - 4y +60
        return Math.pow(vars[0], 2) + Math.pow(vars[1], 2) - vars[0] * vars[1] - 10 * vars[0] - 4 * vars[1] + 60;
    }

    // 复制萤火虫
    Firefly copyFirefly(Firefly old) {
        return new Firefly(old.curVars.clone(), old.curObjValue, old.fit);
    }

}

可视化代码

import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.control.Button;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
import javafx.util.Duration;

/**
 * @Author:WSKH
 * @ClassName:PlotUtil
 * @ClassType:
 * @Description:
 * @Date:2022/6/6/18:31
 * @Email:1187560563@qq.com
 * @Blog:https://blog.csdn.net/weixin_51545953?type=blog
 */
public class PlotUtil extends Application {

    //当前的时间轴
    private Timeline nowTimeline;
    //绘图位置坐标
    private double[][][] positionArr;

    public static void main(String[] args) {
        launch(args);
    }

    @Override
    public void start(Stage primaryStage) throws Exception {

        // 调用算法获取绘图数据
        FA_Solve solver = new FA_Solve();
        solver.solve();
        positionArr = solver.positionArr;

        // 画图
        try {
            BorderPane root = new BorderPane();
            root.setStyle("-fx-padding: 20;");
            Scene scene = new Scene(root, 1600, 900);
            double canvasWid = 800;
            double canvasHei = 800;
            //根据画布大小缩放坐标值
            this.fixPosition(canvasWid - 100, canvasHei - 100);

            //画布和画笔
            HBox canvasHbox = new HBox();
            Canvas canvas = new Canvas();
            canvas.setWidth(canvasWid);
            canvas.setHeight(canvasHei);
            canvasHbox.setPrefWidth(canvasWid);
            canvasHbox.getChildren().add(canvas);
            canvasHbox.setAlignment(Pos.CENTER);
            canvasHbox.setStyle("-fx-spacing: 20;" +
                    "-fx-background-color: #87e775;");
            root.setTop(canvasHbox);
            GraphicsContext paintBrush = canvas.getGraphicsContext2D();

            //启动
            HBox hBox2 = new HBox();
            Button beginButton = new Button("播放迭代过程");
            hBox2.getChildren().add(beginButton);
            root.setBottom(hBox2);
            hBox2.setAlignment(Pos.CENTER);
            //启动仿真以及暂停仿真
            beginButton.addEventHandler(MouseEvent.MOUSE_CLICKED, event -> {
                nowTimeline.play();
            });

            //创建扫描线连接动画
            nowTimeline = new Timeline();
            createAnimation(paintBrush);

            primaryStage.setScene(scene);
            primaryStage.show();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 修正cityPositionArr的坐标,让画出来的点在画布内
     *
     * @param width
     * @param height
     */
    private void fixPosition(double width, double height) {
        double minX = Double.MAX_VALUE;
        double maxX = -Double.MAX_VALUE;
        double minY = Double.MAX_VALUE;
        double maxY = -Double.MAX_VALUE;

        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                minX = Math.min(minX, this.positionArr[i][j][0]);
                maxX = Math.max(maxX, this.positionArr[i][j][0]);
                minY = Math.min(minY, this.positionArr[i][j][1]);
                maxY = Math.max(maxY, this.positionArr[i][j][1]);
            }
        }

        double multiple = Math.max((maxX - minX) / width, (maxY - minY) / height);

        //转化为正数数
        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                if (minX < 0) {
                    this.positionArr[i][j][0] = this.positionArr[i][j][0] - minX;
                }
                if (minY < 0) {
                    this.positionArr[i][j][1] = this.positionArr[i][j][1] - minY;
                }
            }
        }

        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                this.positionArr[i][j][0] = this.positionArr[i][j][0] / multiple;
                this.positionArr[i][j][1] = this.positionArr[i][j][1] / multiple;
            }
        }

    }

    /**
     * 用画笔在画布上画出所有的孔
     * 画第i代的所有粒子
     */
    private void drawAllCircle(GraphicsContext paintBrush, int i) {
        paintBrush.clearRect(0, 0, 2000, 2000);
        paintBrush.setFill(Color.RED);
        for (int j = 0; j < this.positionArr[i].length; j++) {
            drawCircle(paintBrush, i, j);
        }
    }

    /**
     * 用画笔在画布上画出一个孔
     * 画第i代的第j个粒子
     */
    private void drawCircle(GraphicsContext paintBrush, int i, int j) {
        double x = this.positionArr[i][j][0];
        double y = this.positionArr[i][j][1];
        double radius = 2;
        // 圆的直径
        double diameter = radius * 2;
        paintBrush.fillOval(x, y, diameter, diameter);
    }

    /**
     * 创建动画
     */
    private void createAnimation(GraphicsContext paintBrush) {
        for (int i = 0; i < this.positionArr[0].length; i++) {
            int finalI = i;
            KeyFrame keyFrame = new KeyFrame(Duration.seconds(i * 0.05), event -> drawAllCircle(paintBrush, finalI));
            nowTimeline.getKeyFrames().add(keyFrame);
        }
    }

}
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
目录
相关文章
|
2月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
313 0
|
3月前
|
算法 机器人 定位技术
【VRPTW】基于matlab秃鹰算法BES求解带时间窗的骑手外卖配送路径规划问题(目标函数:最优路径成本 含服务客户数量 服务时间 载量 路径长度)(Matlab代码实现)
【VRPTW】基于matlab秃鹰算法BES求解带时间窗的骑手外卖配送路径规划问题(目标函数:最优路径成本 含服务客户数量 服务时间 载量 路径长度)(Matlab代码实现)
112 0
|
30天前
|
设计模式 算法 搜索推荐
Java 设计模式之策略模式:灵活切换算法的艺术
策略模式通过封装不同算法并实现灵活切换,将算法与使用解耦。以支付为例,微信、支付宝等支付方式作为独立策略,购物车根据选择调用对应支付逻辑,提升代码可维护性与扩展性,避免冗长条件判断,符合开闭原则。
255 35
|
1月前
|
Java 大数据 Go
从混沌到秩序:Java共享内存模型如何通过显式约束驯服并发?
并发编程旨在混乱中建立秩序。本文对比Java共享内存模型与Golang消息传递模型,剖析显式同步与隐式因果的哲学差异,揭示happens-before等机制如何保障内存可见性与数据一致性,展现两大范式的深层分野。(238字)
61 4
|
1月前
|
存储 算法 搜索推荐
《数据之美》:Java数据结构与算法精要
本系列深入探讨数据结构与算法的核心原理及Java实现,涵盖线性与非线性结构、常用算法分类、复杂度分析及集合框架应用,助你提升程序效率,掌握编程底层逻辑。
|
2月前
|
算法 安全 定位技术
【创新未发表】【无人机路径巡检】三维地图路径规划无人机路径巡检GWO孙发、IGWO、GA、PSO、NRBO五种智能算法对比版灰狼算法遗传研究(Matlab代码实现)
【创新未发表】【无人机路径巡检】三维地图路径规划无人机路径巡检GWO孙发、IGWO、GA、PSO、NRBO五种智能算法对比版灰狼算法遗传研究(Matlab代码实现)
225 40
|
1月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
118 0
|
1月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
2月前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
165 4

热门文章

最新文章