Redis6.0.6的三大内存过期策略和八大淘汰策略

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis6.0.6的三大内存过期策略和八大淘汰策略

Redis6.0.6的三大内存过期策略和八大淘汰策略


一、前言

Redis在我们日常开发中是经常用到的,Redis也是功能非常强大,可以进行缓存,还会有一些排行榜、点赞、消息队列、购物车等等;当然还有分布式锁Redisson,我们使用肯定少不了集群!小编最近学习到一些内存如果满了Redis是怎么操作呢?肯定像我们JVM一样,有回收或者淘汰的机制!今天小编和大家一起学习一下,小编也是看了阳哥的课,觉得讲的很好,记录一下,希望可以帮助到大家!!


二、自己配置Redis内存大小

redis安装上,如果你不配置的话,默认就是按你的电脑内存的大小。

我们打开配置文件看一下哈!这里以6.0.6配置文件为例


打开redis.conf文件:856行:


我们可以设置大小,我们可以看到是以字节为单位的哈!

maxmemory <bytes>

我们可以使用命令查询内存大小:

127.0.0.1:6379> config get maxmemory
1) "maxmemory"
2) "0"

不配置默认为0使用电脑最大内存。

当然也可以通过命令进行设置:

127.0.0.1:6379> config set maxmemory 2
OK
127.0.0.1:6379> config get maxmemory
1) "maxmemory"
2) "2"
127.0.0.1:6379> set k1 wang
(error) OOM command not allowed when used memory > 'maxmemory'.

根据测试:我们发现redis也会像JVM一样报OOM异常


心得: 我们一般不会调整Redis的内存大小,如果调也是一般像HashMap的加载因子一样,也就是3/4即可


三、三大过期策略

三大过期策略:定时删除、惰性删除、定期删除


过期策略存在原因:


Redis不可能时时刻刻遍历所有被设置了生存时间的key,来检测数据是否已经到达过期时间,然后对它进行删除。


1. 定时删除


定时删除又名立即删除:能保证内存中数据的最大新鲜度,因为它保证过期键值会在过期后马上被删除,其所占用的内存也会随之释放。但是立即删除对cpu是最不友好的。因为删除操作会占用cpu的时间,如果刚好碰上了cpu很忙的时候,比如正在做交集或排序等计算的时候,就会给cpu造成额外的压力,让CPU心累,时时需要删除,忙死。

这会产生大量的性能消耗,同时也会影响数据的读取操作。


2. 惰性删除


数据到达过期时间,不做处理。等下次访问该数据时,如果未过期,返回数据;发现已过期,删除,返回不存在。

惰性删除策略的缺点是,它对内存是很不友好的。

如果一个键已经过期,而这个键又仍然保留在数据库中,那么只要这个过期键不被删除,它所占用的内存就不会释放。

在使用惰性删除策略时,如果数据库中有非常多的过期键,而这些过期键又恰好没有被访问到的话,那么它们也许永远也不会被删除(除非用户手动执行FLUSHDB),我们甚至可以将这种情况看作是一种内存泄漏 – 无用的垃圾数据占用了大量的内存,而服务器却不会自己去释放它们,这对于运行状态非常依赖于内存的Redis服务器来说,肯定不是一个好消息。


3. 定期删除


定期删除策略是前两种策略的折中:

定期删除策略每隔一段时间执行一次删除过期键操作,并通过限制删除操作执行的时长和频率来减少删除操作对CPU时间的影响。

周期性轮询Redis库中的时效性数据,来用随机抽取的策略,利用过期数据占比的方式控制删除频度

特点1:CPU性能占用设置有峰值,检测频度可自定义设置

特点2:内存压力不是很大,长期占用内存的冷数据会被持续清理


4. 附例子:


redis默认每个100ms检查,是否有过期的key,有过期key则删除。

注意:redis不是每隔100ms将所有的key检查一次而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis直接进去ICU)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。


定期删除策略的难点是确定删除操作执行的时长和频率:如果删除操作执行得太频繁,或者执行的时间太长,定期删除策略就会退化成定时删除策略,以至于将CPU时间过多地消耗在删除过期键上面。如果删除操作执行得太少,或者执行的时间太短,定期删除策略又会和惰性删除束略一样,出现浪费内存的情况。因此,如果采用定期删除策略的话,服务器必须根据情况,合理地设置删除操作的执行时长和执行频率。


5. 总结


定时删除 :对CPU不友好,用处理器性能换取存储空间(拿时间换空间)

惰性删除:对memory不友好,用存储空间换取处理器性能(拿空间换时间)

定期删除:周期性抽查存储空间,随机抽查,重点抽查(存在漏网之鱼)


6.思考


我们会发现,三种情况都存在瑕疵,如果数据量大,一定会出现内存满了,报OOM!所以我们下面引出八大淘汰策略!!


四、八大淘汰策略

我们还是打开redis.conf配置文件,找到861行:

# volatile-lru -> Evict using approximated LRU, only keys with an expire set.
# allkeys-lru -> Evict any key using approximated LRU.
# volatile-lfu -> Evict using approximated LFU, only keys with an expire set.
# allkeys-lfu -> Evict any key using approximated LFU.
# volatile-random -> Remove a random key having an expire set.
# allkeys-random -> Remove a random key, any key.
# volatile-ttl -> Remove the key with the nearest expire time (minor TTL)
# noeviction -> Don't evict anything, just return an error on write operations.

我们来翻译一下哈:


volatile-lru:当内存放不下新添加的数据时,从设置了过期时间的key中使用LRU(最近最少使用)算法进行删除key;

allkeys-lru:当内存放不下新添加的数据时,从所有key中使用LRU(最近最少使用)算法进行删除key。

volatile-lfu:当内存放不下新添加的数据时,从设置了过期时间的key中,使用LFU(最近频繁使用)算法进行删除key。

allkeys-lfu:当内存放不下新添加的数据时,从所有key中使用LFU(最近频繁使用)算法进行删除key;

volatile-random:当内存放不下新添加的数据时,从设置了过期时间的key中,随机删除key;。

allkeys-random:当内存放不下新添加的数据时,从所有key中随机删除key。

volatile-ttl:当内存放不下新添加的数据时,在设置了过期时间的key中,根据过期时间进行淘汰,越早过期的优先被删除key;

noeviction:当内存放不下新添加的数据时,新写入操作会报错。默认策略


五、手动配置淘汰策略

打开redis.conf配置文件找到:887行,把注释去掉,添加自己需要的淘汰策略

maxmemory-policy noeviction

当然我们也可以使用命令进行修改:

127.0.0.1:6379> config set maxmemory-policy allkeys-Lru
OK
127.0.0.1:6379> config get maxmemory-policy
1) "maxmemory-policy"
2) "allkeys-lru"


六、总结

这样我们对Redis就有了进一步的了解,谢谢大家跟着小编一起走下来,看到这里还不动一下你的发财小手点个关注哈!!

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略,分为淘汰易失数据和淘汰全库数据两大类。易失数据淘汰策略包括:volatile-lru、volatile-lfu、volatile-ttl 和 volatile-random;全库数据淘汰策略包括:allkeys-lru、allkeys-lfu 和 allkeys-random。此外,还有 no-eviction 策略,禁止驱逐数据,当内存不足时新写入操作会报错。
71 16
|
25天前
|
存储 算法 Java
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
|
16天前
|
NoSQL 算法 Redis
redis内存淘汰策略
Redis支持8种内存淘汰策略,包括noeviction、volatile-ttl、allkeys-random、volatile-random、allkeys-lru、volatile-lru、allkeys-lfu和volatile-lfu。这些策略分别针对所有键或仅设置TTL的键,采用随机、LRU(最近最久未使用)或LFU(最少频率使用)等算法进行淘汰。
32 5
|
16天前
|
NoSQL 安全 Redis
redis持久化策略
Redis 提供了两种主要的持久化策略:RDB(Redis DataBase)和AOF(Append Only File)。RDB通过定期快照将内存数据保存为二进制文件,适用于快速备份与恢复,但可能因定期保存导致数据丢失。AOF则通过记录所有写操作来确保数据安全性,适合频繁写入场景,但文件较大且恢复速度较慢。两者结合使用可增强数据持久性和恢复能力,同时Redis还支持复制功能提升数据可用性和容错性。
37 5
|
19天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
54 7
|
20天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
49 1
|
1月前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
Redis 采用两种过期键删除策略:惰性删除和定期删除。惰性删除在读取键时检查是否过期并删除,对 CPU 友好但可能积压大量过期键。定期删除则定时抽样检查并删除过期键,对内存更友好。默认每秒扫描 10 次,每次检查 20 个键,若超过 25% 过期则继续检查,单次最大执行时间 25ms。两者结合使用以平衡性能和资源占用。
47 11
|
1月前
|
存储 分布式计算 算法
1GB内存挑战:高效处理40亿QQ号的策略
在面对如何处理40亿个QQ号仅用1GB内存的难题时,我们需要采用一些高效的数据结构和算法来优化内存使用。这个问题涉及到数据存储、查询和处理等多个方面,本文将分享一些实用的技术策略,帮助你在有限的内存资源下处理大规模数据集。
31 1
|
1月前
|
存储 监控 Java
深入理解计算机内存管理:优化策略与实践
深入理解计算机内存管理:优化策略与实践
|
1月前
|
存储 缓存 监控
利用 Redis 缓存特性避免缓存穿透的策略与方法
【10月更文挑战第23天】通过以上对利用 Redis 缓存特性避免缓存穿透的详细阐述,我们对这一策略有了更深入的理解。在实际应用中,我们需要根据具体情况灵活运用这些方法,并结合其他技术手段,共同保障系统的稳定和高效运行。同时,要不断关注 Redis 缓存特性的发展和变化,及时调整策略,以应对不断出现的新挑战。
71 10