【Python深度学习】深度学习框架搭建模版

简介: 首先是导入包因为使用的是pytorch框架所以倒入torch相关包,summary是可以获得自己搭建模型的参数、各层特征图大小、以及各层的参数所占内存的包作用效果如p2

一、框架搭建四部曲

1.导入包

首先是导入包因为使用的是pytorch框架所以倒入torch相关包,summary是可以获得自己搭建模型的参数、各层特征图大小、以及各层的参数所占内存的包作用效果如p2

安装方法:pip install torchsummary

'''
导入包
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary

2.定义类和函数

定义类Class以及def super,这些是类的继承最基础的知识啦如果不懂原理就按模版记下即可;接着开始搭建层,这里采用nn.Sequential,相当于一个大容器可以放入任意量的网络层p1中放入一个卷积层;接着进入线性层依然使用nn.Sequential;

class Net(nn.Module):
    def __init__(self, num_classes=10):
        super(Net, self).__init__()
        self.fetures = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=64,
                                                kernel_size=3, stride=1, padding=1))
        self.classify = nn.Sequential(nn.Linear(32 * 32 * 64, 20),
                                      nn.Linear(20, num_classes))

3.定义网络层

定义好网络层就可以定义层之间的计算过程啦首先进入卷积层接着需要将卷积层的形状从四维变成二维,在这里使用了view函数,接着传入线性层得到return

def forward(self, x):
        x = self.fetures(x)
        x = x.view(x.size(0), -1)
        x = self.classify(x)
        return x

4.实例化网络

实例化网络;假设输入大小为(10, 3, 32,32),将输入传入网络就得到输出结果的尺寸啦!其中10代表每一次输入的图像张数;3是通道数3, 32, 32为输入图片的宽高。调用summary检查网络结构,此时只需输入(3, 32, 32)即可因为summary中只需输入通道数以及宽高即可。

Modle = Net()
input = torch.ones([10, 3, 32, 32])
result = Modle(input)
print(result.shape)
summary(Modle.to("cuda"), (3, 32, 32))

二、完整代码

完整代码如下,如果运行后出现错误可以在评论区里写下你的看法和建议:

'''
Aouther:LiuZhenming
Time:2022-09-25
'''
# 导入包
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
# 定义类和函数
class Net(nn.Module):
    def __init__(self, num_classes=10):
        super(Net, self).__init__()
        self.fetures = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=64,
                                                kernel_size=3, stride=1, padding=1))
        self.classify = nn.Sequential(nn.Linear(32 * 32 * 64, 20),
                                      nn.Linear(20, num_classes))
    # 定义网络层
    def forward(self, x):
        x = self.fetures(x)
        x = x.view(x.size(0), -1)
        x = self.classify(x)
        return x
# 实例化网络
Modle = Net()
input = torch.ones([10, 3, 32, 32])
result = Modle(input)
print(result.shape)
summary(Modle.to("cuda"), (3, 32, 32))

三、运行结果

如 果 运 行 后 出 现 错 误 可 以 在 评 论 区 留 下 你 的 看 法 和 建 议 哦 ~

torch .Size([10,10])

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Layer (type) Output Shape Param #

==============================================================

Conv2d-1 [-1,64,32,32] 1,792

Linear-3 [-1,10] 210

==============================================================

Total params: 1, 312, 742

Trainable params: 1, 312, 742

Non-trainable params: 0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Input size (MB) : 0.01

Forward/ backward pass size (MB) : 0.50


相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
20 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
25天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
245 55
|
24天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
167 73
|
27天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
80 21
|
29天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
78 23
|
30天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费习惯预测的深度学习模型
使用Python实现智能食品消费习惯预测的深度学习模型
111 19
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
117 18
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现深度学习模型:智能食品消费行为预测
使用Python实现深度学习模型:智能食品消费行为预测
72 8
|
28天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
57 2
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
下一篇
开通oss服务