列索引实现分层
我们知道,列索引存在于 DataFrame 结构中,下面创建一个 DataFrame 来演示列索引如何实现分层。
import numpy as np info = pd.DataFrame(np.arange(12).reshape(4, 3), index = [['a', 'a', 'b', 'b'], ['one', 'two', 'three', 'four']], columns = [['num1', 'num2', 'num3'], ['x', 'y', 'x']] ) print(info)
输出结果:
num1 num2 num3
x y x
a one 0 1 2
two 3 4 5
b three 6 7 8
four 9 10 11
查看所有列索引:
info.columns
输出结果:
MultiIndex([(‘num1’, ‘x’),
(‘num2’, ‘y’),
(‘num3’, ‘x’)],)
交换层和层排序
通过 swaplevel() 方法轻松地实现索引层交换,示例如下:
import pandas as pd frame = pd.DataFrame(np.arange(12).reshape((4, 3)), index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]], columns=[['Ohio', 'Ohio', 'Colorado'], ['Green', 'Red', 'Green']]) #设置index的levels名称 frame.index.names = ['key1', 'key2'] #设置columns的levels名称 frame.columns.names = ['state','color'] #交换key1层与key层 frame.swaplevel('key1','key2')
输出结果:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
2 a 3 4 5
1 b 6 7 8
2 b 9 10 11
- 层排序
通过 sort_index() 的level参数实现对层的排序。下面示例,按“key1”的字母顺序重新排序。
import pandas as pd frame = pd.DataFrame(np.arange(12).reshape((4, 3)), index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]], columns=[['Ohio', 'Ohio', 'Colorado'], ['Green', 'Red', 'Green']]) #设置index的levels的名称,key1 与 key2分别对应不同的层 frame.index.names = ['key1', 'key2'] #设置columns的levels的名称 frame.columns.names = ['state','color'] print(frame.sort_index(level='key1'))
输出结果:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
Pandas执行SQL操作
我们知道,使用 SQL 语句能够完成对 table 的增删改查操作,Pandas 同样也可以实现 SQL 语句的基本功能。本节主要讲解 Pandas 如何执行 SQL 操作。
首先加载一个某连锁咖啡厅地址分布的数据集,通过该数据集对本节内容进行讲解。
import pandas as pd url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx' coffee_df=pd.read_excel(url) coffee_df.head()
输出结果如下:
address category id tel
0 北京市东城区南竹竿胡同2号1幢2层30212号银河SOHOC座 娱乐休闲:咖啡厅 1874263549184796345 010-85179080
1 北京市东城区东直门内大街277-31号档口 娱乐休闲:咖啡厅 1461638360847848424 400-669-2002
2 北京市东城区王府井东街8号澳门中心L117商场102室 娱乐休闲:咖啡厅 1308505235389562852 400-010-0100
3 北京市东城区前门大街108号底商 娱乐休闲:咖啡厅 15442844740539053384
4 北京市东城区和平里西街51号雍和宫壹中心A座负一层 娱乐休闲:咖啡厅 2357391864111641256 4000100100
SELECT
在 SQL 中,SELECT 查询语句使用,把要查询的每个字段分开,当然您也可以使用*来选择所有的字段。如下所示:
SELECT address, category, id, tel FROM tips LIMIT 5;
对于 Pandas 而言,要完成 SELECT 查询,需要把数据集每一列(columns)的名称传递给 DataFrame 对象。如下所示:
coffee_df[['address','category','id','tel']].head()
下面代码是 Pandas 执行 SELECT 查询的完整程序:
import pandas as pd url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx' coffee_df=pd.read_excel(url) #只查看尾3行 coffee_df[['address', 'category', 'id', 'tel']].tail(3)
输出结果如下:
address category id tel
28912 新疆维吾尔自治区北屯市芳园路69-2-12 娱乐休闲:咖啡厅 7443833746160692626
28913 新疆维吾尔自治区北屯市北屯购物公园7-1-7 娱乐休闲:咖啡厅 15288143245642241877
28914 新疆维吾尔自治区可克达拉市人民西路与育才路交叉口西北50米 娱乐休闲:咖啡厅 17884214706482955
假如您传入的是一个空列表, 那最终结果将输出所有的行索引标签。
WHERE
SQL 中的条件查询是通过 WHERE 子句完成的。格式如下所示:
SELECT * FROM coffee_df WHERE tel = '010-85179080';
然而 DataFrame 可以通过多种方式实现条件筛选,最直观的方法是通过布尔索引:
coffee_df[coffee_df['id'] == '1461638360847848424']
完整程序如下:
import pandas as pd url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx' coffee_df=pd.read_excel(url) coffee_df[coffee_df['tel'] == '400-010-0100'].head(5)
输出结果如下:
address category id tel
2 北京市东城区王府井东街8号澳门中心L117商场102室 娱乐休闲:咖啡厅 1308505235389562852 400-010-0100
5 北京市东城区崇文门外大街3号崇文新世界百货一期南门一层 娱乐休闲:咖啡厅 3294587167648650139 400-010-0100
6 北京市东城区东四北大街265号文化金融大厦1层大堂 娱乐休闲:咖啡厅 3046481700882245722 400-010-0100
7 北京市东城区珠市口东大街2号丰泰中心1层 娱乐休闲:咖啡厅 3218554253235914037 400-010-0100
9 北京市东城区怡生健身居然大厦店休闲区 娱乐休闲:咖啡厅 3141197020974020427 400-010-0100
上面的语句通过布尔运算将 True 或 False 对象传递给 DataFrame 对象,然后返回所有为 True 的行。
GroupBy
在 SQL 语句中,通过 GroupBy 操作可以获取 table 中一组记录的计数。示例如下:
SELECT id, count(*) FROM tips GROUP BY id;
而 Pandas 可通过以下代码实现:
coffe_df.groupby('id').size()
完整的程序如下所示:
import pandas as pd url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx' coffee_df=pd.read_excel(url) print(coffee_df.groupby('id').size())
输出结果:
id
938817537566269 1
1343221331916894 1
2068013370184103 1
2147497429057385 1
4021181356852391 1
…
18443951046631684378 1
18444337559943971606 1
18444494959108924300 1
18445005868173060838 1
18446259420330511125 1
Length: 23240, dtype: int64
LIMIT
在 SQL 中,LIMIT 语句主要起到限制作用,比如查询前 n 行记录:
SELECT * FROM coffee_df LIMIT n;
而在 Pandas 中,您可以通过 head() 来实现(默认前 5 行),示例如下:
import pandas as pd url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx' coffee_df=pd.read_excel(url) coffee_df[['address', 'tel']].head(3)
输出结果:
address tel
0 北京市东城区南竹竿胡同2号1幢2层30212号银河SOHOC座 010-85179080
1 北京市东城区东直门内大街277-31号档口 400-669-2002
2 北京市东城区王府井东街8号澳门中心L117商场102室 400-010-0100
Pandas和NumPy的比较
我们知道 Pandas 是在 NumPy 的基础构建而来,因此,熟悉 NumPy 可以更加有效的帮助我们使用 Pandas。
创建数组
数组的主要作用是在一个变量中存储多个值。NumPy 可以轻松地处理多维数组,示例如下:
import numpy as np arr = np.array([2, 4, 6, 8, 10, 12]) print(type(arr)) print ("打印新建数组: ",end="") #使用for循环读取数据 for l in range (0,5): print (arr[l], end=" ")
输出结果:
<class ‘numpy.ndarray’>
打印新建数组: 2 4 6 8 10
虽然 Python 本身没有数组这个说法,不过 Python 提供一个 array 模块,用于创建数字、字符类型的数组,它能够容纳字符型、整型、浮点型等基本类型。示例如下:
import array #注意此处的 'l' 表示有符号int类型 arr = array.array('l', [2, 4, 6, 8, 10, 12]) print(type(arr)) print ("新建数组: ",end="") for i in range (0,5): print (arr[i], end=" ")
输出结果:
<class ‘array.array’>
新建数组: 2 4 6 8 10
布尔索引
布尔索引是 NumPy 的重要特性之一,通常与 Pandas 一起使用。它的主要作用是过滤 DataFrame 中的数据,比如布尔值的掩码操作。
下面示例展示了如何使用布尔索引访问 DataFrame 中的数据。
首先创建一组包含布尔索引的数据,如下所示:
import pandas as pd dict = {'name':["Smith", "William", "Phill", "Parker"], 'age': ["28", "39", "34", "36"]} info = pd.DataFrame(dict, index = [True, True, False, True]) print(info)
输出结果:
name age
True Smith 28
True William 39
False Phill 34
True Parker 36
然后使用.loc访问索引为 True 的数据。示例如下:
import pandas as pd dict = {'name':["Smith", "William", "Phill", "Parker"], 'age': ["28", "39", "34", "36"]} info = pd.DataFrame(dict, index = [True, True, False, True]) #返回所有为 True的数据 print(info.loc[True])
输出结果:
name age
True Smith 28
True William 39
True Parker 36
重塑数组形状
在不改变数组数据的情况下,对数组进行变形操作,即改变数组的维度,比如 23(两行三列)的二维数组变维 32(三行两列)的二维数组。变形操作可以通过 reshape() 函数实现。
示例如下:
import numpy as np arr = np.arange(16) print("原数组: \n", arr) arr = np.arange(16).reshape(2, 8) print("\n变形后数组:\n", arr) arr = np.arange(16).reshape(8 ,2) print("\n变形后数组:\n", arr)
输出结果:
原数组:
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
变形后数组:
[[ 0 1 2 3 4 5 6 7]
[ 8 9 10 11 12 13 14 15]]
变形后数组:
[[ 0 1]
[ 2 3]
[ 4 5]
[ 6 7]
[ 8 9]
[10 11]
[12 13]
[14 15]]
Pdans与NumPy区别
Pandas 和 NumPy 被认为是科学计算与机器学习中必不可少的库,因为它们具有直观的语法和高性能的矩阵计算能力。下面对 Pandas 与 NumPy 进行简单的总结,如下表所示:
转换ndarray数组
在某些情况下,需要执行一些 NumPy 数值计算的高级函数,这个时候您可以使用 to_numpy() 函数,将 DataFrame 对象转换为 NumPy ndarray 数组,并将其返回。函数的语法格式如下:
DataFrame.to_numpy(dtype=None, copy=False)
参数说明如下:
dtype:可选参数,表示数据类型;
copy:布尔值参数,默认值为 Fales,表示返回值不是其他数组的视图。
下面使用示例,了解该函数的使用方法。
示例 1
info = pd.DataFrame({"P": [2, 3], "Q": [4.0, 5.8]}) #给info添加R列 info['R'] = pd.date_range('2020-12-23', periods=2) print(info) #将其转化为numpy数组 n=info.to_numpy() print(n) print(type(n))
输出结果:
[[2 4.0 Timestamp(‘2020-12-23 00:00:00’)]
[3 5.8 Timestamp(‘2020-12-24 00:00:00’)]]
可以通过 type 查看其类型,输出如下:
numpy.ndarray
示例2:
import pandas as pd #创建DataFrame对象 info = pd.DataFrame([[17, 62, 35],[25, 36, 54],[42, 20, 15],[48, 62, 76]], columns=['x', 'y', 'z']) print('DataFrame\n----------\n', info) #转换DataFrame为数组array arr = info.to_numpy() print('\nNumpy Array\n----------\n', arr)
输出结果:
DataFrame
x y z
0 17 62 35
1 25 36 54
2 42 20 15
3 48 62 76
Numpy Array
[[17 62 35]
[25 36 54]
[42 20 15]
[48 62 76]]