常见排序算法-冒泡排序、选择排序 、插入排序 、快速排序、 归并排序 、堆排序

简介: 排序算法• 冒泡排序• 冒泡排序的优化• 选择排序• 插入排序• 快速排序• 归并排序• 堆排序

冒泡排序


145866746f6f4a6ab7348bed9c731daa.gif

平均时间复杂度: o(n^2)

最好时间: o(n)

最坏时间: o(n^2)

空间复杂度: o(1)

是否稳定: 稳定

简单的冒泡排序

    public int[] bubbleSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 0;i < len;i++){
            for(int j = 0;j < len-i-1;j++){
                if(nums[j] > nums[j+1]){
                    int temp = nums[j+1];
                    nums[j+1] = nums[j];
                    nums[j] = temp;
                }
            }
        }
        return nums;
    }


冒泡排序的优化

设置标志位

设置一个标志位来标识这次遍历是否进行过交换

如果没有进行过交换则表示数组已经有序,直接退出

 public int[] binarySort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 0;i < len-1;i++){
            boolean isSort = true;  //是否有序
            for(int j = 0;j < len-i-1;j++){
                if(nums[j] > nums[j+1]){
                    int temp = nums[j+1];
                    nums[j+1] = nums[j];
                    nums[j] = temp;
                    isSort = false;
                }
            }
            if(isSort) break;
        }
        return nums;
    }


设置结束位置

比如初始数组为[4,3,2,1,5,6]

经过第一次排序后数组变为[3,2,1,4,5,6]

如果按照普通冒泡排序下次需要遍历的下标范围为[0,4]

但是[3,4]是已经有序的,所以可以减少比较,保存上次交换的结束位置

public int[] bubbleSort(int [] nums){
    int len = nums.length;
    if(len <= 1) return nums;
    int max_index = len-1;
    int index = max_index;
    for(int i = 0;i < len-1;i++){
        boolean isSort = true;  //是否有序
        for(int j = 0;j < index;j++){
            if(nums[j] > nums[j+1]){
                int temp = nums[j+1];
                nums[j+1] = nums[j];
                nums[j] = temp;
                isSort = false;
                max_index=j;
            }
        }
        if(isSort) break;
        index = max_index;
    }
    return nums;
    }

双向冒泡排序

与设置结束位置类似,这个是也设置了起始位置

使得在left之前的都是已经排好序的

    public int[] bubbleSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        int left = 0;
        int right = len-1;
        int tleft = 0,tright = 0;
        while(left < right){
            boolean isSort = true;
            for(int i = left;i < right;i++){
                if(nums[i+1] < nums[i]){
                    int temp = nums[i];
                    nums[i] = nums[i+1];
                    nums[i+1] = temp;
                    isSort = false;
                    tright = i;
                }
            }
            if(isSort)break;
            right = tright;
            isSort = true;
            for(int i = right;i > left;i--){
                if(nums[i] < nums[i-1]){
                    int temp = nums[i];
                    nums[i] = nums[i-1];
                    nums[i-1] = temp;
                    isSort = false;
                    tleft = i;
                }
            }
            if(isSort)break;
            left = tleft;
        }
        return nums;
    }

选择排序


fd3b383f48e74e8e86067846af27c12b.gif

平均时间复杂度: o(n^2)

最好时间: o(n^2)

最坏时间: o(n^2)

空间复杂度: o(1)

是否稳定: 不稳定

选择排序

    public int[] selectSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 0;i < len;i++){
            int minIndex = i;
            for(int j = i;j < len;j++){
                if(nums[j] < nums[minIndex]){
                    minIndex = j;
                }
            }
            int t = nums[minIndex];
            nums[minIndex] = nums[i];
            nums[i] = t;
        }
        return nums;
    }


插入排序


7a7a54d942f74bfdb4b0629173d24c0c.gif

平均时间复杂度: o(n^2)

最好时间: o(n)

最坏时间: o(n^2)

空间复杂度: o(1)

是否稳定: 稳定

插入排序

    public int[] insertSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 1;i < len;i++){
            int cur = nums[i];
            int preIndex = i - 1;
            while(preIndex >= 0 && nums[preIndex] > cur){
                nums[preIndex+1] = nums[preIndex];
                preIndex--;
            }
            nums[preIndex+1] = cur;
        }
        return nums;
    }


快速排序


e34b13dd820448efb8f6664e5b1192dd.gif

平均时间复杂度: o(nlogn)

最好时间: o(nlogn)

最坏时间: o(n^2)

空间复杂度: o(logn)

是否稳定: 不稳定

快速排序

    public void quickSort(int [] nums,int left,int right){
       if(left >= right) return;
       int l = left - 1;
       int r = right + 1;
       int t = nums[left];
       while(l < r){
           do l++;while(nums[l] < t);
           do r--;while(nums[r] > t);
           if(l < r){
               int temp = nums[l];
               nums[l] = nums[r];
               nums[r] = temp;
           }
       } 
       quickSort(nums,left,r);
       quickSort(nums,r+1,right);
    }


归并排序


73d0a113dfc94817850eb68e93437e94.gif

平均时间复杂度: o(nlogn)

最好时间: o(nlogn)

最坏时间: o(nlogn)

空间复杂度: o(n)

是否稳定: 稳定

    public void mergeSort(int [] nums,int left,int right){
        if(left >= right) return;
        int mid = left + right >> 1;
        mergeSort(nums,left,mid);
        mergeSort(nums,mid+1,right);
        //需要合并 [left,mid] [mid+1,right]
        int []temp = new int[right-left+1];
        int l = left,r = mid+1,k = 0;
        while(l <= mid && r <= right){
            if(nums[l] < nums[r]) temp[k++] = nums[l++];
            else temp[k++] = nums[r++];
        }
        while(l <= mid) temp[k++] = nums[l++];
        while(r <= right) temp[k++] = nums[r++];
        for(int i = right;i >= left;i--){
            nums[i] = temp[--k];
        }
    }


堆排序


22b96ad4c2174e4e8f6bfc5f47cecd6a.gif

平均时间复杂度: o(nlogn)

最好时间: o(nlogn)

最坏时间: o(nlogn)

空间复杂度: o(1)

是否稳定: 不稳定

    public void heapSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return;
        //构造大根堆
        for(int i = (len-1)/2; i>=0 ;i--){
            heap(nums,i,len);
        }
        //将根弄到最后
        for(int i = len-1;i >=0; i--){
            int t = nums[0];
            nums[0] = nums[i];
            nums[i] = t;
            heap(nums,0,i);
        }
    }
    //子树构建大顶堆
    public void heap(int[] nums,int index,int size){
        int max = index;
        int left = 2 * index + 1;
        int right = 2 * index + 2;
        if(left < size && nums[left] > nums[max]) max = left;
        if(right < size && nums[right] > nums[max]) max = right;
        if(max != index){
            int t = nums[index];
            nums[index] = nums[max];
            nums[max] = t;
            heap(nums,max,size);
        }
    }
相关文章
|
23天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
125 67
|
2月前
|
搜索推荐
冒泡排序算法
【10月更文挑战第19天】冒泡排序是一种基础的排序算法,虽然在实际应用中可能不是最优的选择,但对于理解排序算法的基本原理和过程具有重要意义。
|
2月前
|
搜索推荐 C语言
排序算法--冒泡排序
排序算法--冒泡排序
21 0
|
17天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
23天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
11天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
19天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
11天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
16天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。