不相交的线(LeetCode-1035)
题目
在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。
现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足满足:
nums1[i] == nums2[j]
且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。
以这种方法绘制线条,并返回可以绘制的最大连线数。
示例 1:
输入:nums1 = [1,4,2], nums2 = [1,2,4] 输出:2 解释:可以画出两条不交叉的线,如上图所示。 但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。
示例 2:
输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2] 输出:3
示例 3:
输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1] 输出:2
提示:
1 <= nums1.length, nums2.length <= 500
1 <= nums1[i], nums2[j] <= 2000
思路
本质上和最长公共子序列(LeetCode-1143)一模一样。(公共子序列里的排序顺序不能改变)
代码展示
class Solution { public: int maxUncrossedLines(vector<int> &nums1, vector<int> &nums2) { int n1 = nums1.size(); int n2 = nums2.size(); vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1)); for (int i = 1; i <= n1; i++) { for (int j = 1; j <= n2; j++) { if (nums1[i - 1] == nums2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]); } } } return dp[n1][n2]; } };