深度学习:PCA白化

简介: PCA白化

PCA白化

前置知识

一文读懂PCA

回顾PCA

PCA是在对观测数据进行基变换,新的坐标系使各数据维度线性无关,坐标系的重要程度从大到小衰减。

求解过程:

  1. 数据标准化(以远点为坐标原点)
  2. 求协方差矩阵
  3. 对协方差矩阵特征值分解找到最大方差的方向
  4. 对数据基变换

其中特征向量,就是最大方差方向,每个特征向量对应的特征值就是这个数据维度的方差。

PCA白化

PCA白化实际上就是在数据通过PCA进行基变换后再把数据进行标准化,让数据每个维度的方差全部为1。
公式推导如下:

符号定义:X:原始数据矩阵 M:原始数据协方差矩阵 设S1/2为白化矩阵

在这里插入图片描述

对M特征值分解:
在这里插入图片描述
U就是我们要找的变换矩阵,转换数据基坐标:
XPCA=UX

然后进行白化操作:
lambda为特征值
在这里插入图片描述

其中有的特征值很小,会造成数值溢出,就给它加上了1个常数项,于是把白化矩阵改为:

在这里插入图片描述

HanZee
+关注
目录
打赏
0
0
1
0
4
分享
相关文章
【博士每天一篇文献-算法】Zero-Shot Machine Unlearning
这篇论文提出了零样本机器遗忘的概念,介绍了两种新方法——错误最小化-最大化噪声(Error Maximization-Minimization, M-M)和门控知识传输(Gated Knowledge Transfer, GKT),以实现在不访问原始训练数据的情况下从机器学习模型中删除特定数据,同时引入了Anamnesis指数来评估遗忘质量,旨在帮助企业有效遵守数据隐私法规。
177 3
淘宝商品评论 API 接口:深度解析用户评论,优化产品与服务
淘宝是领先的中国电商平台,其API为开发者提供商品信息、交易记录及用户评价等数据访问服务。对于获授权的开发者和商家,可通过申请API权限、获取并解析评论数据来进行情感分析和统计,进而优化产品设计、提升服务质量、增强用户互动及调整营销策略。未授权用户可能受限于数据访问。
【机器学习】Python详细实现基于欧式Euclidean、切比雪夫Chebyshew、曼哈顿Manhattan距离的Kmeans聚类
文章详细实现了基于不同距离度量(欧氏、切比雪夫、曼哈顿)的Kmeans聚类算法,并提供了Python代码,展示了使用曼哈顿距离计算距离矩阵并输出k=3时的聚类结果和轮廓系数评价指标。
207 1
OSPF中的区域划分详解
OSPF中的区域划分详解
583 0
Faiss为啥这么快?原来是量化器在做怪!2
Faiss为啥这么快?原来是量化器在做怪!
532 1
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问