SCoRe: 通过强化学习教导大语言模型进行自我纠错
谷歌研究人员提出了一种名为自我纠错强化学习(SCoRe)的新方法,旨在使大型语言模型(LLMs)能够在无需外部反馈的情况下即时纠正自己的错误。SCoRe通过在线多轮强化学习训练模型,解决了传统自我纠错方法的局限性。实验结果显示,SCoRe在数学问题求解和代码生成任务上显著提升了模型的自我纠错能力,相较于基准模型和其他方法表现出色。此外,SCoRe还可与其他推理优化技术结合,进一步提升模型性能。尽管存在迭代次数限制和计算成本等局限性,SCoRe为未来研究提供了新的方向,有望推动AI系统的自主性和适应性发展。