C++数据结构算法(四)递推与递归

简介: C++数据结构算法(四)递推与递归

递推思想简介:

递推,意思就是用已经有的信息一点点推出想要知道的信息。


比如,平面上有一个机器人,一开始在坐标(0,0)处,第一秒向东移动一米,第二秒向南移动两米,第三秒向西移动三米,第四秒向北移动四米……机器人一直按照这个规律移动下去。由于我们知道了最开始的时候机器人的位置,我们就可以一秒一秒地推算出接下来每一个时刻机器人的位置。这就是递推。


显然,如果我们用人脑去模拟一个递推算法,是比较简单的,因为“根据已有信息推出未知信息”是我们常用的思考方式,符合直觉。


如果用电脑运行递推算法,我们应该考虑使用循环。我们可以在循环的过程中使用数组和临时变量记录下来每一步递推的过程和结果。比如在刚刚的机器人例子中,我们可以使用数组来记录每一秒结束时机器人的具体位置,使用临时变量来记录机器人当前的朝向。这和我们使用人脑模拟递推算法的区别不大。


递推思想:


根据已有的东西一点点地推出未知的东西。


使用递推解题三步骤:


数学建模

找出递推式和初始条件

写出代码。

张爽的青蛙(斐波那契)问题:地上有nn个石头从左到右排成一排,张爽同学养的青蛙要从第一个石头跳到最后一个石头上,每次可以选择向右跳一格或者跳两格,问总共有多少种不同的走法?


递推式:f[n] = f[n-1] + f[n-2];


初始条件:f[1] = f[2] = 1。因为从1走到1只有一种方案(呆在原地不动),从1走到2也只有一种方案(走一格);


完整代码:

#include <bits/stdc++.h>
using namespace std;
const int MOD = 998244353; // 答案对998244353取模。
int k, f[1000010];
int main() {
    cin >> k;
    f[1] = f[2] = 1; // 初始条件
    for( int i = 3; i <= k; ++i )
        f[i] = (f[i-1] + f[i-2]) % MOD; // 递推式,记得取模
    cout << f[k] << endl;
    return 0;
}

卡特兰数问题:由nn对括号组成的括号序列,有多少种是合法的括号序列?


递推式:f[n] = f[0] * f[k-1] + ... + f[k-1] * f[0];


初始条件:f[0] = 1,因为0对括号只能组成一种括号序列(空序列);


完整代码:

#include <bits/stdc++.h>
using namespace std;
const int MOD = 998244353;
int n, f[100010];
int main() {
    cin >> n;
    f[0] = 1; // 初始条件
    for( int i = 1; i <= n; ++i ) { // 求f[i]的值
        for( int k = 0; k < i; ++k ) {
            f[i] += int((long long)f[k] * f[i-k-1] % MOD); // 递推式
            // 注意,两个int相乘的结果可能爆int,因此乘法的过程要转换成long long以避免整数溢出
            f[i] %= MOD; // 记得取模
        }
    }
    cout << f[n] << endl;
    return 0;
}

时间复杂度:O(n^2)。

递推思想:


根据已有的东西一点点地推出未知的东西。


使用递推解题三步骤:


数学建模

找出递推式和初始条件

写出代码。

错位排列问题:有nn个信封和nn个信件,第ii个信件属于第ii个信封,我们想知道,有多少种不同的方法,使得没有任何一个信件被装入正确的信封中?


递推式:f[n] = (n-1)(f[n-1] + f[n-2]);


初始条件:f[1] = 0,因为只有1个信件和信封的时候,没有办法错位排列;f[2] = 1,只有2个信件和信封的时候,只有一种方法(交叉放)。


完整代码:

#include <bits/stdc++.h>
using namespace std;
const int MOD = 998244353;
int f[1000010], n;
int main() {
    cin >> n;
    f[1] = 0; // 初始条件
    f[2] = 1;
    for( int i = 3; i <= n; ++i ) {
        f[i] = (long long)(i-1) * (f[i-1] + f[i-2]) % MOD;
        // 注意取模,并且小心乘法会爆int
    }
    cout << f[n] << endl;
    return 0;
}


杨辉三角(二维递推)问题:从nn个不同的物品中选取mm个,有多少种不同的选择方法?这是一个经典的组合数问题,而本题需要你解决一个更难的问题:给出k,你需要输出一个(k+1)*(k+1)(k+1)∗(k+1)的矩阵,其中第ii行第jj列表示,从ii个不同的物品中选jj个,有多少种不同的方法(行和列的标号从0开始)。


递推式:f[i][j] = f[i-1][j-1] + f[i-1][j];


初始条件:f[i][0] = f[i][i] = 1; // 递推边界条件;


完整代码:

#include <bits/stdc++.h>
using namespace std;
const int MOD = 998244353;
int f[2010][2010] = {0}, k; // 初始化f数组为全0
int main() {
    cin >> k;
    for( int i = 0; i <= k; ++i ) {
        f[i][0] = f[i][i] = 1; // 递推边界条件
        for( int j = 1; j < i; ++j ) {
            f[i][j] = (f[i-1][j-1] + f[i-1][j]) % MOD; // 递推式,记得取模
        }
        for( int j = 0; j <= k; ++j ) {
            cout << f[i][j] << ' '; // 输出这一整行
        }
        cout << endl;
    }
    return 0;
}

时间复杂度:O(n^2)。

这就是递归


递归简介


递归,简单地来说,就是一个函数自己调用自己。


比如下面的代码,就是一个很简单的递归代码。

#include <bits/stdc++.h>
using namespace std;
void f() {
    f(); // f函数调用自己
}
int main() {
    f();
    return 0;
}

递归是一个函数自己调用自己。


递归的本质是数学归纳法。


我们总是需要从数学归纳法的角度去思考递归,永远不要尝试展开递归过程。


斐波那契数列问题:输入正整数n,使用递归法求出斐波那契数列的第n项,答案对998244353取模。


数学公式:


f(1) = f(2) = 1 // 初始值

f(n) = f(n-1) + f(n-2) // 递归公式

完整代码:

#include <bits/stdc++.h>
using namespace std;
const int MOD = 998244353;
int f( int n ) {
    if( n == 1 || n == 2 ) 
        return 1; // 边界条件
    else 
        return (f(n-1) + f(n-2)) % MOD; // 不要忘记取模
}
int main() {
    int n;
    cin >> n;
    cout << f(n) << endl;
    return 0;
}


求阶乘问题:输入非负整数n,使用递归法求出n的阶乘,答案对998244353取模。


数学公式:


f(0) = 1 // 初始值

f(n) = f(n-1) * n // 递归公式

完整代码:

#include <bits/stdc++.h>
using namespace std;
const int MOD = 998244353;
int f( int n ) {
    if( n == 0 ) 
        return 1;    // 0的阶乘等于1
    else return 
        (long long)f(n-1) * n % MOD; // 注意取模,小心爆int
}
int main() {
    int n;
    cin >> n;
    cout << f(n) << endl;
    return 0;
}

理解递归的三板斧:


确认并牢记这个递归函数的功能,始终不能改。

仔细检查,写对边界条件。

递归调用自己时,放心大胆地用,假设这个函数就是对的。

写递归算法时,要牢记该函数只干一件事情,要写出所有边界条件,要放心大胆地递归调用自己。


递归算法的复杂度往往难以精确把握,只需要根据边界条件的执行次数和递归调用次数估算即可。

相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
117 4
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
99 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
11天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
49 20
|
3天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
1天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
8天前
|
算法 安全 C++
用 C++ 算法控制员工上网的软件,关键逻辑是啥?来深度解读下
在企业信息化管理中,控制员工上网的软件成为保障网络秩序与提升办公效率的关键工具。该软件基于C++语言,融合红黑树、令牌桶和滑动窗口等算法,实现网址精准过滤、流量均衡分配及异常连接监测。通过高效的数据结构与算法设计,确保企业网络资源优化配置与安全防护升级,同时尊重员工权益,助力企业数字化发展。
32 4
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
110 23
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
64 2