C++数据结构算法(三)二分查找

简介: C++数据结构算法(三)二分查找

二分查找:

二分查找的思路:我们设定一个初始的L和R,保证答案在[L,R]中,当[L,R]中不止有一个数字的时候,取区间的中点M,询问这个中点和答案的关系,来判断答案是M,还是位于[L,M-1]中,还是位于[M+1,R]中。


二分查找时间复杂度的计算方法:


比如,在猜数字的游戏中,假设我们一开始有n个数字。每次把剩余数字的区间分成两半,直到xx次后只剩下最后一个数字,就是我们想要的答案啦。 计算公式如下:


n * 1/(2^x) = 1n∗1/(2x)=1

xx次后只剩下最后一个数字


x = log_2(n)x=log2(n)

那么,xx的值就是log n咯


总结


现在我们来看一下二分查找这个神奇的算法:


二分查找的原理:每次排除掉一半答案,使可能的答案区间快速缩小。


二分查找的时间复杂度:log_2(n)log2(n),因为每次询问会使可行区间的长度变为原来的一半。


我们再来看一下二分查找的思路:我们设定一个初始的L和R,保证答案在[L,R]中,当[L,R]中不止有一个数字的时候,取区间的中点M,询问这个中点和答案的关系,来判断答案是M,还是位于[L,M-1]中,还是位于[M+1,R]中。


二分查找的伪代码如下:


int L = 区间左端点;
int R = 区间右端点; // 闭区间
while( L < R ) { // 区间内有至少两个数字
    int M = L+(R-L)/2; // 区间中点
    if( M是答案 ) 答对啦;
    else if( M比答案小 ) L = M+1;
    else R = M-1; // M比答案大
}
// 若运行到这里,因为答案一定存在,所以一定有L==R,且L是答案

总结


二分查找可能会遇到哪些边界情况?为什么示例代码能完美的解决这些边界情况?


答:总是可以通过问题转换写出满足L < R的优美代码。


二分查找伪代码

while( L < R ) {
    int M = L + (R - L)/2;
    if( 答案在[M + 1,R]中 ) { // 思考一下,什么情况下能够说明“答案在[M+1,R]中”
        L = M + 1;
    } else { // 答案在[L,M]中
        R = M;
    }
}

写二分查找遇到了死循环,考虑是不是遇到了“差一点”问题。


如果代码中是用的L = M,把L不断往右push,那么M向上取整(M = L + (R - L + 1)/2);


如果代码中是用的R = M,把R不断往左push,那么M向下取整(M = L + (R - L)/2)。


代码示例:


有一个从小到大排好序的数组,你要找到第一个大于等于x的数字,应该怎么做?

输入n,x,以及一个长度为n的数组a(已经从小到大排好序了)


输入样例:


9 4


2 3 3 3 3 4 4 4 4


代码样例:

#include <iostream>
using namespace std;
int n, x, a[100000];
int main() {
    cin >> n >> x; // n为数组元素个数,x为
    // 输入数组
    for( int i = 0; i < n; ++i ) 
        cin >> a[i];
    // 考虑数组中不存在大于等于x的数字的情况
    if( x > a[n-1] ) {           
        cout << -1 << endl;
        return 0;
    }
    // 二分查找
    int L = 0, R = n-1;          // 数组下标从0到n-1,闭区间
    while( L < R ) {             // 当区间中至少有两个数字的时候,需要继续二分
        int M = L + (R - L) / 2; // 求出区间中点
        if( a[M] < x ) {         // 答案一定出现在[M+1,R]中
            L = M + 1;
        } else {                 // a[M] >= x,答案一定出现在[L,M]中
            R = M;
        }
    }
    // 此时L == R,a[L]就是第一个大于等于x的数字
    if ( a[L] == x) {
        cout << L << endl;  // 如果答案存在,则输出答案
    } else {
        cout << -1 << endl; // 如果答案不存在,则输出-1
    }
    return 0;
}

最后,再回顾一下在上一知识点中,我们推导了二分查找的时间复杂度。只有当我们询问区间中点的时候,我们才能让可行区间的长度以最快的速度变短——每次大约变为原来长度的一半,所以二分查找的时间复杂度是log_2(n)log2(n)。


二分查找时间复杂度的计算方法:


比如,在猜数字的游戏中,假设我们一开始有n个数字。每次把剩余数字的区间分成两半,直到xx次后只剩下最后一个数字,就是我们想要的答案啦。 计算公式如下:


n * 1/(2^x) = 1n∗1/(2x)=1


xx次后只剩下最后一个数字


x = log_2(n)x=log2(n)


那么,xx的值就是log_2(n)log2(n)咯


image.png

练习题:

#include <bits/stdc++.h>
using namespace std;
int a[100010];
int main() {
    int n, x;
    cin >> n;
    for (int i = 1; i <= n; i++)
        cin >> a[i];
    cin >> x;
    int pos = lower_bound(a + 1, a + n + 1, x) - a;
    if (a[pos] != x)
        cout << "not find" << endl;
    else
        cout << pos << endl;
    return 0;
}


二分查找算法的应用范围:

如果我们想要在一个数组上进行二分查找,那么这个数组必须是有序的,不管是升序还是降序,它必须是有序的。


为什么呢?


注意二分查找的本质是什么:通过比较数组中间那个值和我们要求的值的关系,来判断出“答案不可能出现在数组的某一半”,从而让我们的查找范围缩小为原来的一半。


image.png


这也就是为什么我们要求数组中的元素是满足单调性的:只有这样,我们才能保证当a[M]不满足条件的时候,它左边(或者右边)的所有元素都不满足条件。


所以:


要进行二分,数组必须是有序的。


基本上所有可以比较的数据都可以进行二分查找。


比如:日期、字符串、二维数组

如果数据可以方便的计算“中点”,那么就可以在大区间上二分查找指定的数据(比如日期)



lower_bound的用途是:在指定的升序排序的数组中,找到第一个大于等于x的数字。


upper_bound的用途是:在指定的升序排序的数组中,找到第一个大于x的数字。


这两个函数会返回对应数字的指针(或者是迭代器)。

int a[100000], n;
cin >> n;
for( int i = 0; i < n; ++i )
    cin >> a[i];
sort(a, a + n);
int *p = lower_bound(a, a + n, 13); // 第一个大于等于13的数字
int *q = upper_bound(a, a + n, 13); // 第一个大于13的数字

假如我们使用lower_bound和upper_bound二分查找同一个数字13,容易发现,我们得到的两个指针构成了一个左闭右开区间,这个区间里全部都是数字13。


image.png


巧妙地运用这两个函数,可以完成所有常见的二分查找操作:


找到第一个大于等于x的数字

找到第一个大于x的数字

找到最后一个等于x的数字

查找数组中是否有数字x

查询数组中有几个数字x

找到最后一个小于x的数字

……


我们总结一些二分查找的常见应用:


lower_bound和upper_bound


lower_bound的用途是:在指定的升序排序的数组中,找到第一个大于等于x的数字。


upper_bound的用途是:在指定的升序排序的数组中,找到第一个大于x的数字。


使用lower_bound和upper_bound可以帮我们解决绝大多数二分查找问题。


这两个函数会返回对应数字的指针。示例代码如下:


nt a[100000], n;
cin >> n;
for( int i = 0; i < n; ++i )
    cin >> a[i];
sort(a, a + n);
int *p = lower_bound(a, a + n, 13); // 第一个大于等于13的数字
int *q = upper_bound(a, a + n, 13); // 第一个大于13的数字

假如我们使用lower_bound和upper_bound二分查找同一个数字13,容易发现,我们得到的两个指针构成了一个左闭右开区间,这个区间里全部都是数字13。


巧妙地运用这两个函数,可以完成所有常见的二分查找操作:


找到第一个大于等于x的数字

找到第一个大于x的数字

找到最后一个等于x的数字

查找数组中是否有数字x

查询数组中有几个数字x

找到最后一个小于x的数字

二分法可以求方程的近似解。


二分法可以用来优美地实现离散化操作。


在double上二分时,尽量使用固定次数二分的方法。

相关文章
|
5月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
125 2
|
29天前
|
存储 算法 搜索推荐
软考算法破壁战:从二分查找到堆排序,九大排序核心速通指南
专攻软考高频算法,深度解析二分查找、堆排序、快速排序核心技巧,对比九大排序算法,配套动画与真题,7天掌握45%分值模块。
82 0
软考算法破壁战:从二分查找到堆排序,九大排序核心速通指南
|
6月前
|
存储 算法 C++
Windows共享文件:探秘C++实现的B树索引算法奇境
在数字化时代,Windows共享文件的高效管理至关重要。B树算法以其自平衡多路搜索特性,在文件索引与存储优化中表现出色。本文探讨B树在Windows共享文件中的应用,通过C++实现具体代码,展示其构建文件索引、优化数据存储的能力,提升文件检索效率。B树通过减少磁盘I/O操作,确保查询高效,为企业和个人提供流畅的文件共享体验。
|
7月前
|
存储 负载均衡 算法
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
191 15
|
7月前
|
运维 监控 算法
解读 C++ 助力的局域网监控电脑网络连接算法
本文探讨了使用C++语言实现局域网监控电脑中网络连接监控的算法。通过将局域网的拓扑结构建模为图(Graph)数据结构,每台电脑作为顶点,网络连接作为边,可高效管理与监控动态变化的网络连接。文章展示了基于深度优先搜索(DFS)的连通性检测算法,用于判断两节点间是否存在路径,助力故障排查与流量优化。C++的高效性能结合图算法,为保障网络秩序与信息安全提供了坚实基础,未来可进一步优化以应对无线网络等新挑战。
|
7月前
|
存储 算法 数据处理
公司局域网管理中的哈希表查找优化 C++ 算法探究
在数字化办公环境中,公司局域网管理至关重要。哈希表作为一种高效的数据结构,通过哈希函数将关键值(如IP地址、账号)映射到数组索引,实现快速的插入、删除与查找操作。例如,在员工登录验证和设备信息管理中,哈希表能显著提升效率,避免传统线性查找的低效问题。本文以C++为例,展示了哈希表在局域网管理中的具体应用,包括设备MAC地址与IP分配的存储与查询,并探讨了优化哈希函数和扩容策略,确保网络管理高效准确。
|
3月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
86 1
|
3月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
100 0
|
4月前
|
存储 机器学习/深度学习 算法
基于 C++ 的局域网访问控制列表(ACL)实现及局域网限制上网软件算法研究
本文探讨局域网限制上网软件中访问控制列表(ACL)的应用,分析其通过规则匹配管理网络资源访问的核心机制。基于C++实现ACL算法原型,展示其灵活性与安全性。文中强调ACL在企业与教育场景下的重要作用,并提出性能优化及结合机器学习等未来研究方向。
118 4
|
5月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
155 17

热门文章

最新文章