史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(三)

简介: 史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(三)

这个xiaozhai,是我设置的我的虚拟环境的名字,你可以自行修改,随便叫啥都想,只要不是汉语就行。


image.png


这里输入 y 即可 ,(yes和no的意思)。


image.png


这就是在创建属于自己的环境ing


image.png


这样就是环境创建成功


然后我们需要进入我们的环境


我们需要输入命令:

conda activate xiaozhai

xiaozhai改成自己刚开始设置环境的时候,设置的环境名字


image.png


看最左边由base变成了xiaozhai,这说明进入了我们设置的环境


环境配置导入:

这个时候我们就需要打开pycharm了,将我们设置的环境解释器导入pycharm


首选,在桌面上新建一个名为test的文件夹。


                            image.png                      


我们打开pycharm


image.png

点击open


        image.png        


找到test文件夹打开。


image.png


然后我们需要导入解释器,


点击左上角的File


image.png


点击Setting


        image.png                


我们在Python Interpreter里找到自己创建环境的解释器,因为理论为可以创建无数个环境,我们找打适合我们这个工程的环境。


image.png

image.png

这四个环境是我之前创建的四个环境的解释器,我们点击左上角的+号,寻找我们的新环境

image.png

image.png

有时候,系统会自动检测到环境解释器,然后导入,就像我这样,但是如果没有自动检测到的话,你就要手动寻找了。


点击最右边的三个....


image.png


我们的环境在我们anaconda的安装位置的envs文件夹下


              image.png


我们不是直接将环境名字的这个文件夹导入,而是点开文件夹,里面有个python.exe,如我下图所示,将这个选中,然后点击ok。


       image.png 


可以看到我的环境里面有了我刚才新创建环境的解释器。

image.png


我们选中这个环境的解释器,点击下面的ok,即可将我们创建环境的解释器,导入Pycharm


image.png


到这里,我们就可以完成了基本的环境配置,我们就可以下载各种我们需要的库和深度学习框架了。


opencv环境配置下载:

同上打开anaconda Prompt 输入上述命令进入我们的环境,这样可以保证我们配置的库都在我们设置的虚拟环境中


image.png

image.png


我们只需要在这里输入各种库的下载命令即可


以opencv为例:


pip install opencv-python


image.png

这个下载库的过程用的是国外的源,有时候网速不好会下载的很慢,会出现这种情况

image.png

我们可以换成豆瓣源下载,会大大加快下载速度。


pip install 下载的包名 -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
pip install opencv-python -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com


image.png

当最下面出现 Successfully installed numpy-1.22.3 opencv-python-4.5.5.64,说明安装成功,对于所有库都是这样,出现Successfully installed +库名说明安装成功


image.png

image.png

我们可以在我们的pycharm相应环境的解释器中找到对应的安装包名字,即可说明安装成功。


好了讲到这里,我想大家应该会举一反三了,所有库都是这样下载的,只是有时候你需要去查清楚具体安装包的名字,别在pip的时候搞错包的名字就行。


TensorFlow环境配置:

比如我们经常用的TensorFlow


pip install Tensorflow -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com


image.png

Tensorflow安装成功

image.png

Pytorch环境的配置:

Pytorh的配置命令不太一样,你需要去他的官网找到他给的下载命令,输入即可。


Pytorch官网网址:PyTorch


根据你的需要选择,会出现不同的命令


image.png


也只是命令不一样,其他操作方式一样。


这里给出Pytorch的下载命令(window系统,CPU版本的Pytorch):


conda install pytorch torchvision torchaudio cpuonly -c pytorch

安装Pytorch

image.png

又会出现这种,输入y,按回车即可


image.png


输入y,按回车即可

image.png

环境下载ing


image.png


下载各种版本的方法,以opencv为例:

下载3.4.11.41版本的opencv

pip install opencv-python==3.4.11.41 -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

image.png

相关文章
|
2天前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
38 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
20天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
46 8
|
20天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
59 7
|
20天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
47 4
|
20天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
42 5
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
31 1
|
2月前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
30 1
|
2月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 6
显著性检验是统计学中用于判断样本与总体假设间是否存在显著差异的方法。SciPy的scipy.stats模块提供了执行显著性检验的工具,如T检验,用于比较两组数据的均值是否来自同一分布。通过ttest_ind()函数,可以获取两样本的t统计量和p值,进而判断差异是否显著。示例代码展示了如何使用该函数进行T检验并输出结果。
31 1
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
41 1