史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(一)

简介: 史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(一)

首先我们先说一下软件下载问题:

我们要配置环境,一定要下载软件,我个人是非常主张所有软件都采用谷歌浏览器下载的,事实也证明这样做会带来很多好处,基本上程序猿都是使用谷歌浏览器的,我不建议使用其他浏览器采用我的方法,而且谷歌浏览器的盗版很多,我这里给出正确的下载链接。


Google Chrome 网络浏览器


image.png


直接下载安装即可,默认路径就行,反正也不大,千万别坚持用什么360等等,谷歌浏览器的好处自己慢慢体会。


然后我们就要下载我们需要的深度学习环境软件了,我们的环境是基于anaconda和pycharm的,这也是现在大多数搞深度学习的程序员喜欢的,当然也可以单纯用anaconda或者pycharm进行开发,但是弊端你自己慢慢体会,我这里只说我认为对的方法,anaconda+pycharm。


简单解释一下两个软件的功能,anaconda提供基本上你能想要的所有库,通过anaconda下载所有库,然后pycharm是IDE,就是所谓的写程序的编译环境,我们通过anaconda下载所有库,然后导入pycharm进行使用和程序开发。这就组成了我们所谓的深度学习环境,或者你配置的是其他环境也行,反正都一样。


说到这里,我们已经对我们需要配置的软件有了一点了解,下面我们给出anaconda和pycharm的下载链接,之前帮师弟师妹们配置环境,发现他们都从网上乱找这些软件,甚至从微信公众号上搞百度云的下载链接,总之会出现各种问题,其实我们之间去官网下载就行,反正anaconda是免费的不用破解,pycharm社区版的也不用破解(社区版的完全可以满足需求,至少我用了三年了一直没啥问题)。


anaconda下载链接:Anaconda | The World's Most Popular Data Science Platform


image.png

点Download直接下载即可,我默认大家都是windows系统,其他的系统的请另选他处。


pycharm的下载链接:PyCharm: the Python IDE for Professional Developers by JetBrains


image.png

点击DOWNLOAD ,则进入到下一个界面,如下,

image.png


左边的Professional是专业版的,我们下载的是右边的Community社区版的即可。点右边黑色的Download即可,这就是正在下载了。


image.png

好了,等我们软件下载成功我们就要进入深度学习这个天坑了,做好被恶心的准备,如果你网速不好下载失败了,多点几次就行了,或者换个网速好的地方,这也没办法,多尝试吧。


image.png

软件下载好了,我们首先安装anaconda,看了网上那么多啰嗦的anaconda安装教程会导致我刚开始学的时候看的头大,我决定来个简单点的教程,干净利落的解决所有问题,其他详细的问题,遇到了再慢慢解决就行。


anaconda的安装:

双击运行


                  image.png


点击next,


                  image.png


点击I Agree


                image.png


点击Next


              image.png


这里是安装路径,可以修改,别让路径中有中文即可,我这里是瞎弄的,因为我电脑上有环境了,所以走个形式给大家演示一下。


然后点Next即可


image.png


这里按照我弄的来就行,如果你想深究参数的意义,可以自行百度研究。这里点Install


image.png

这是正在安装的过程,等就行了,有时候可能会有点慢。


image.png

最后界面上不论你的选项是否跟我的一样,你都不要选,不要选,这两个对号不要打。


好了,到这里你的anaconda就安装完毕了。 点击的电脑的开始


                      ,image.png


会出现这一大堆,默认win10啊,其他的也差不多,这说明安装好了。

目录
打赏
0
1
0
0
88
分享
相关文章
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
68 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
118 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
Python3虚拟环境venv
`venv` 是 Python 的虚拟环境工具,用于为不同项目创建独立的运行环境,避免依赖冲突。通过 `python3 -m venv` 命令创建虚拟环境,并使用 `source bin/activate` 激活。激活后,所有 Python 包将安装在该环境中,不影响系统全局环境。退出环境使用 `deactivate` 命令。每个虚拟环境拥有独立的包集合,确保项目间的隔离性。删除虚拟环境只需删除其目录即可。
107 34
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
云产品评测|分布式Python计算服务MaxFrame | 在本地环境中使用MaxFrame + 基于MaxFrame实现大语言模型数据处理
本文基于官方文档,介绍了由浅入深的两个部分实操测试,包括在本地环境中使用MaxFrame & 基于MaxFrame实现大语言模型数据处理,对步骤有详细说明。体验下来对MaxCompute的感受是很不错的,值得尝试并使用!
82 1
轻松搞定在Python中构建虚拟环境
本教程教你如何使用业界公认的最佳实践,创建一个完全工作的Python开发环境。虚拟环境通过隔离依赖项,避免项目间的冲突,并允许你轻松管理包版本。我们将使用Python 3的内置`venv`模块来创建和激活虚拟环境,确保不同项目能独立运行,不会相互干扰。此外,还将介绍如何检查Python版本、激活和停用虚拟环境,以及使用`requirements.txt`文件共享依赖项。 通过本教程,你将学会: - 创建和管理虚拟环境 - 避免依赖性冲突 - 部署Python应用到服务器 适合新手和希望提升开发环境管理能力的开发者。
228 2
|
2月前
|
探索Python虚拟环境:virtualenv、venv与pipenv比较
在Python开发中,有效的环境管理至关重要。virtualenv、venv和pipenv是常用的虚拟环境管理工具。virtualenv支持Python 2.7+和3.3+,可创建独立环境;venv为Python 3.3+内置库,简单轻量但功能有限;pipenv则结合了包管理和虚拟环境管理,生成Pipfile.lock确保依赖确定性和安全性,推荐作为首选工具。
151 2
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
69 0
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈