阿里云机器学习 PAI 年度发布:持续锻造云原生的 AI 工程平台

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 刚刚结束的 2022 云栖大会上,阿里云机器学习平台 PAI 发布了在开发者服务、企业级能力、工程性能优化三个方向的一系列新特性和功能。从支撑达摩院上云,到服务金融、汽车、互联网、制造等多个行业的创新实践,机器学习 PAI 不断夯实云原生的 AI 工程平台能力。

演讲人:

林伟 | 阿里云研究员、阿里云机器学习 PAI 平台和大数据平台技术负责人

黄博远 | 阿里云资深产品专家、阿里云 AI 产品总监

活动:2022 云栖大会

随着人工智能技术进入到快速应用发展的阶段,AI 工程的必要性愈发凸显,它关系到创新成果能否实质性地落地和服务。AI 工程化,具体体现为“从数据和算力的云原生化”、“调度和编程范式的规模化”、“开发和服务的标准化普惠化”三个方面。


今年,从支撑达摩院上云,到服务金融、汽车、互联网、制造等多个行业的创新实践,机器学习 PAI 不断夯实云原生的 AI 工程平台能力。刚刚结束的 2022 云栖大会上,阿里云机器学习平台 PAI 发布了在开发者服务、企业级能力、工程性能优化三个方向的一系列新特性和功能。

image.png

开发者服务

AI 开发者长期以来面临诸多挑战,例如环境不一致、开发工具百花齐放、最佳实践难以复用等等。为此,机器学习平台 PAI 通过以下新能力提供更轻松易用的开发体验。

  • 大数据与 AI 开发整合

通过 PAI-DSW,开发者可以便捷地访问云原生大数据平台 MaxCompute 和使用 EMR 上开源的数据计算能力。这样,AI 开发者可以基于云上的结构化和非结构化数据,去构建自己的业务,获得更大的想象空间。

  • 与模型社区 ModelScope 魔搭联动

当开发者在模型社区 ModelScope 魔搭上找到合适的模型,可以一键跳转到 PAI-DSW 中进行微调优化,获得定制的高效人工智能模型。并通过 PAI-DLC 进行分布式训练,最后在 PAI-EAS 中将其部署成在线服务,更好地分享和应用。

  • 多场景最佳实践库

通过 PAI-DSW Gallery, 我们提供丰富的多场景最佳实践库,开发者能够一键复用、快速上手,快速解决场景问题。

  • 云原生的异构硬件资源

通过 PAI 平台,开发者在进行模型开发调优的同时,也能对接各类云原生的算力资源,使得开发者能专注开发,不再为资源选择、资源管理等问题困扰。

image.png

企业级能力

除了单点地服务好开发者,机器学习平台 PAI 非常关注企业级能力的打造,让 AI 团队有更高的协同效率和管理效率。

  • 资源管理

通过端到端的仪表盘,企业可以清晰地看到已经使用的资源情况,还可通过 PAI-AI 工作空间进一步管理和分配云原生的训练资源、推理资源、成员权限,并完成 MaxCompute、Flink 等大数据计算资源绑定。

  • 全链路 OpenAPI

PAI 推出了覆盖模型开发应用全过程的 OpenAPI,包括数据准备、模型开发、模型训练、推理服务、资源管理等各个方面,企业客户可以集成 PAI 的能力,与自己的平台做深度整合。

  • 可视化建模

PAI-Designer 是可视化、低代码的建模平台,内置 200+ 最佳实践算法组件,可以支持企业客户快速构建业务流程。PAI-Designer 具备支持跨计算资源的工作流、支持流批一体计算、支持自定义 Python 和 SQL 语句等新功能。

  • MLOps

PAI 提供完善的模型及版本管理功能,支持训练任务和部署服务的血缘查询。支持训练及推理镜像的统一管理,支持实验及 Metrics 对照管理。

image.png

工程性能优化

性能优化一直是机器学习 PAI 团队的关注焦点。我们开放了数据、训练、推理各方面的加速能力,帮助用户实现整个 AI 系统的降本增效。

  • 数据集加速

PAI-DatasetAcc 是 PAI 新发布的数据集加速器,在训练过程中可实现对训练数据集吞吐效率高达 10 倍以上的提升。

  • 大规模训练

开源大规模分布式训练框架 EPL 可支持高达 10 万亿参数量级的模型训练,与传统方案相比训练效率提升 11 倍。EPL 通过对不同并行化策略进行统一抽象、封装,在一套分布式训练框架中支持多种并行策略,并进行显存、计算、通信等全方位的优化,来提供易用、高效的分布式训练能力。开源大规模稀疏模型训练/预测引擎 DeepRec 在分布式、图优化、算子、Runtime 等方面对稀疏模型进行了深度性能优化,同时提供了稀疏场景下特有的 Embedding 相关功能。目前支持了淘宝搜索、推荐、广告等电商业务,支撑着千亿特征、万亿样本的超大规模稀疏训练。

  • 推理优化

PAI 提供推理优化工具 PAI-Blade,支持自动压缩、编译优化、通用推理优化等,适配多种计算架构的硬件,推理效率可提升 6 倍。PAI-Blade 帮助用户通过工具化、系统化地方式完成模型服务推理优化,无需再通过人工定制的方式实现。此外,PAI-Blade 以原生框架扩展形式实现,不会入侵和改动原有的 AI 部署流程。PAI-Blade 核心自研能力是 AI 编译器 BladeDISC。BladeDISC 开创性地对 AI 模型中越来越强的动态性进行原生支持,极大扩展了编译优化的应用空间,为更多、更复杂、更加动态化的模型带来性能提升。今年,BladeDISC 也已经开源。


从提升开发者效率、提升开发团队的效率、再到提升机器使用的效率,机器学习平台 PAI 坚持以云原生和弹性灵活的平台服务,支撑更多开发者和企业完成 AI 创新与落地,尤其在搜推广、用户增长、智慧零售、自动驾驶等领域积累大量最佳实践。


了解更多关于机器学习平台 PAI 相关消息:https://www.aliyun.com/product/bigdata/learn?gzh_allj1114

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
6天前
|
人工智能 运维 Kubernetes
阿里云容器服务AI助手2.0 - 新一代容器智能运维能力
2024年11月,阿里云容器服务团队进一步深度融合现有运维可观测体系,在场景上覆盖了K8s用户的全生命周期,正式推出升级版AI助手2.0,旨在更好地为用户使用和运维K8S保驾护航。
|
3天前
|
人工智能 运维 监控
阿里云Milvus产品发布:AI时代云原生专业向量检索引擎
随着大模型和生成式AI的兴起,非结构化数据市场迅速增长,预计2027年占比将达到86.8%。Milvus作为开源向量检索引擎,具备极速检索、云原生弹性及社区支持等优势,成为全球最受欢迎的向量数据库之一。阿里云推出的全托管Milvus产品,优化性能3-10倍,提供企业级功能如Serverless服务、分钟级开通、高可用性和成本降低30%,助力企业在电商、广告推荐、自动驾驶等场景下加速AI应用构建,显著提升业务价值和稳定性。
|
3天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
5天前
|
人工智能 Cloud Native 数据管理
数据+AI融合趋势洞察暨阿里云OpenLake解决方案发布
Forrester是全球领先的市场研究与咨询机构,专注于新兴技术在各领域的应用。本文探讨如何加速现代数据管理,推动人工智能与客户业务的融合创新。面对数据标准缺乏、多云环境复杂性、新兴业务场景及过多数据平台等挑战,Forrester提出构建AI就绪的数据管理基石,通过互联智能框架、全局数据管理和DataOps、端到端数据管理能力、AI赋能的数据管理以及用例驱动的策略,帮助企业实现数据和AI的深度融合,提升业务价值并降低管理成本。
|
8月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
259 14
|
8月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
143 1
|
8月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
8月前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
365 0
|
8月前
|
机器学习/深度学习 数据采集 监控
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
1036 0
|
8月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【2月更文挑战第20天】 在数据科学与人工智能的领域中,支持向量机(SVM)是一种强大的监督学习算法,它基于统计学习理论中的VC维理论和结构风险最小化原理。本文将深入探讨SVM的核心概念、工作原理以及实际应用案例。我们将透过算法的数学原理,揭示如何利用SVM进行有效的数据分类与回归分析,并讨论其在处理非线性问题时的优势。通过本文,读者将对SVM有更深层次的理解,并能够在实践中应用这一算法解决复杂的数据问题。
106 0

相关产品

  • 人工智能平台 PAI