20行代码:Serverless架构下用Python轻松搞定图像分类和预测

本文涉及的产品
函数计算FC,每月15万CU 3个月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 图像分类是人工智能领域的一个热门话题。通俗解释就是,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。图像分类在实际生产生活中也是经常遇到的,而且针对不同领域或者需求有着很强的针对性。例如通过拍照花朵识别花朵信息,通过人脸匹对人物信息等。

前言

图像分类是人工智能领域的一个热门话题。通俗解释就是,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。图像分类在实际生产生活中也是经常遇到的,而且针对不同领域或者需求有着很强的针对性。例如通过拍照花朵识别花朵信息,通过人脸匹对人物信息等。

通常情况下,这些图像识别或者分类的工具,都是在客户端进行数据采集,在服务端进行运算获得结果,也就是说一般情况下都是有专门的API实现图像识别的。例如各大云厂商都会为我们有偿提供类似的能力:

阿里云图像识别页面:

华为云图像识别页面:

本文将会通过一个有趣的Python库,快速将图像分类的功能搭建在云函数上,并且和API网关结合,对外提供API功能,实现一个Serverless架构的"图像分类API"。

首先和大家据介绍一下需要的依赖库:ImageAI。通过该依赖的官方文档我们可以看到这样的描述:

ImageAI是一个python库,旨在使开发人员能够使用简单的几行代码构建具有包含深度学习和计算机视觉功能的应用程序和系统。

ImageAI本着简洁的原则,支持最先进的机器学习算法,用于图像预测,自定义图像预测,物体检测,视频检测,视频对象跟踪和图像预测训练。ImageAI目前支持使用在ImageNet-1000数据集上训练的4种不同机器学习算法进行图像预测和训练。ImageAI还支持使用在COCO数据集上训练的RetinaNet进行对象检测,视频检测和对象跟踪。 最终,ImageAI将为计算机视觉提供更广泛和更专业化的支持,包括但不限于特殊环境和特殊领域的图像识别。

也就是说这个依赖库,可以帮助我们完成基本的图像识别和视频的目标提取,虽然他给了一些数据集和模型,但是我们也可以根据自身需要对其进行额外的训练,进行定制化拓展。通过官方给的代码,我们可以看到一个简单的Demo:

# -*- coding: utf-8 -*-

from imageai.Prediction import ImagePrediction


# 模型加载

prediction = ImagePrediction()

prediction.setModelTypeAsResNet()

prediction.setModelPath("resnet50_weights_tf_dim_ordering_tf_kernels.h5")

prediction.loadModel()


predictions, probabilities = prediction.predictImage("./picture.jpg", result_count=5 )

for eachPrediction, eachProbability in zip(predictions, probabilities):

   print(str(eachPrediction) + " : " + str(eachProbability))

当我们指定的picture.jpg图片为:

我们在执行之后的结果是:

laptop : 71.43893241882324

notebook : 16.265612840652466

modem : 4.899394512176514

hard_disc : 4.007557779550552

mouse : 1.2981942854821682

如果在使用过程中觉得模型resnet50_weights_tf_dim_ordering_tf_kernels.h5过大,耗时过长,可以按需求选择模型:

  • SqueezeNet(文件大小:4.82 MB,预测时间最短,精准度适中)
  • ResNet50 by Microsoft Research (文件大小:98 MB,预测时间较快,精准度高)
  • InceptionV3 by Google Brain team (文件大小:91.6 MB,预测时间慢,精度更高)
  • DenseNet121 by Facebook AI Research (文件大小:31.6 MB,预测时间较慢,精度最高)

模型下载地址可参考Github地址:https://github.com/OlafenwaMoses/ImageAI/releases/tag/1.0,或者参考ImageAI官方文档:https://imageai-cn.readthedocs.io/zh_CN/latest/ImageAI_Image_Prediction.html

项目 Serverless 化

将项目按照函数计算的需求,编写好入口方法,以及做好项目初始化,同时在当前项目下创建文件夹model,并将模型文件拷贝到该文件夹:

项目整体流程:

实现代码:

# -*- coding: utf-8 -*-


from imageai.Prediction import ImagePrediction

import json

import uuid

import base64

import random



# Response

class Response:

   def __init__(self, start_response, response, errorCode=None):

       self.start = start_response

       responseBody = {

           'Error': {"Code": errorCode, "Message": response},

       } if errorCode else {

           'Response': response

       }

       # 默认增加uuid,便于后期定位

       responseBody['ResponseId'] = str(uuid.uuid1())

       print("Response: ", json.dumps(responseBody))

       self.response = json.dumps(responseBody)


   def __iter__(self):

       status = '200'

       response_headers = [('Content-type', 'application/json; charset=UTF-8')]

       self.start(status, response_headers)

       yield self.response.encode("utf-8")



# 随机字符串

randomStr = lambda num=5: "".join(random.sample('abcdefghijklmnopqrstuvwxyz', num))


# 模型加载

print("Init model")

prediction = ImagePrediction()

prediction.setModelTypeAsResNet()

print("Load model")

prediction.setModelPath("/mnt/auto/model/resnet50_weights_tf_dim_ordering_tf_kernels.h5")

prediction.loadModel()

print("Load complete")



def handler(environ, start_response):

   try:

       request_body_size = int(environ.get('CONTENT_LENGTH', 0))

   except (ValueError):

       request_body_size = 0

   requestBody = json.loads(environ['wsgi.input'].read(request_body_size).decode("utf-8"))


   # 图片获取

   print("Get pucture")

   imageName = randomStr(10)

   imageData = base64.b64decode(requestBody["image"])

   imagePath = "/tmp/" + imageName

   with open(imagePath, 'wb') as f:

       f.write(imageData)


   # 内容预测

   print("Predicting ... ")

   result = {}

   predictions, probabilities = prediction.predictImage(imagePath, result_count=5)

   print(zip(predictions, probabilities))

   for eachPrediction, eachProbability in zip(predictions, probabilities):

       result[str(eachPrediction)] = str(eachProbability)


   return Response(start_response, result)

所需要的依赖:

tensorflow==1.13.1

numpy==1.19.4

scipy==1.5.4

opencv-python==4.4.0.46

pillow==8.0.1

matplotlib==3.3.3

h5py==3.1.0

keras==2.4.3

imageai==2.1.5

编写部署所需要的配置文件:

ServerlessBookImageAIDemo:

 Component: fc

 Provider: alibaba

 Access: release

 Properties:

   Region: cn-beijing

   Service:

     Name: ServerlessBook

     Description: Serverless图书案例

     Log: Auto

     Nas: Auto

   Function:

     Name: serverless_imageAI

     Description: 图片目标检测

     CodeUri:

       Src: ./src

       Excludes:

         - src/.fun

         - src/model

     Handler: index.handler

     Environment:

       - Key: PYTHONUSERBASE

         Value: /mnt/auto/.fun/python

     MemorySize: 3072

     Runtime: python3

     Timeout: 60

     Triggers:

       - Name: ImageAI

         Type: HTTP

         Parameters:

           AuthType: ANONYMOUS

           Methods:

             - GET

             - POST

             - PUT

           Domains:

             - Domain: Auto


在代码与配置中,可以看到有目录:/mnt/auto/的存在,该部分实际上是nas挂载之后的地址,只需提前写入到代码中即可,下一个环节会进行nas的创建以及挂载点配置的具体操作。

项目部署与测试

在完成上述步骤之后,可以通过:

s deploy

进行项目部署,部署完成可以看到结果:

完成部署之后,可以通过:

s install docker

进行依赖的安装:

依赖安装完成可以看到在目录下生成了.fun的目录,该目录就是通过docker打包出来的依赖文件,这些依赖正是我们在requirements.txt文件中声明的依赖内容。

完成之后,我们通过:

s nas sync ./src/.fun

将依赖目录打包上传到nas,成功之后再将model目录打包上传:

s nas sync ./src/model

完成之后可以通过:

s nas ls --all

查看目录详情:

完成之后,我们可以编写脚本进行测试,同样适用刚才的测试图片,通过代码:

import json

import urllib.request

import base64

import time


with open("picture.jpg", 'rb') as f:

   data = base64.b64encode(f.read()).decode()


url = 'http://35685264-1295939377467795.test.functioncompute.com/'


timeStart = time.time()

print(urllib.request.urlopen(urllib.request.Request(

   url=url,

   data=json.dumps({'image': data}).encode("utf-8")

)).read().decode("utf-8"))

print("Time: ", time.time() - timeStart)


可以看到结果:

{"Response": {"laptop": "71.43893837928772", "notebook": "16.265614330768585", "modem": "4.899385944008827", "hard_disc": "4.007565602660179", "mouse": "1.2981869280338287"}, "ResponseId": "1d74ae7e-298a-11eb-8374-024215000701"}

Time:  29.16020894050598

可以看到,函数计算顺利地返回了预期结果,但是整体耗时却超乎想象,有近30s,此时我们再次执行一下测试脚本:

{"Response": {"laptop": "71.43893837928772", "notebook": "16.265614330768585", "modem": "4.899385944008827", "hard_disc": "4.007565602660179", "mouse": "1.2981869280338287"}, "ResponseId": "4b8be48a-298a-11eb-ba97-024215000501"}

Time:  1.1511380672454834

可以看到,再次执行的时间仅有1.15秒,比上次整整提升了28秒之多。

项目优化

在上一轮的测试中可以看到,项目首次启动和二次启动的耗时差距,其实这个时间差,主要是函数在加载模型的时候浪费了及长的时间。

即使在本地,我们可以简单测试:

# -*- coding: utf-8 -*-


import time


timeStart = time.time()


# 模型加载

from imageai.Prediction import ImagePrediction


prediction = ImagePrediction()

prediction.setModelTypeAsResNet()

prediction.setModelPath("resnet50_weights_tf_dim_ordering_tf_kernels.h5")

prediction.loadModel()

print("Load Time: ", time.time() - timeStart)

timeStart = time.time()


predictions, probabilities = prediction.predictImage("./picture.jpg", result_count=5)

for eachPrediction, eachProbability in zip(predictions, probabilities):

   print(str(eachPrediction) + " : " + str(eachProbability))

print("Predict Time: ", time.time() - timeStart)

执行结果:

Load Time:  5.549695014953613

laptop : 71.43893241882324

notebook : 16.265612840652466

modem : 4.899394512176514

hard_disc : 4.007557779550552

mouse : 1.2981942854821682

Predict Time:  0.8137111663818359

可以看到,在加载imageAI模块以及加载模型文件的过程中,一共耗时5.5秒,在预测部分仅有不到1秒钟的时间。而在函数计算中,机器性能本身就没有我本地的性能高,此时为了降低每次装载模型导致的响应时间过长,在部署的代码中,可以看到模型装载过程实际上是被放在了入口方法之外,这样做的一个好处是,项目每次执行的时候,不一定会有冷启动,也就是说在某些复用的前提下是可以复用一些对象的,即无需每次都重新加载模型,导入依赖等。

所以在实际项目中,为了避免频繁请求,实例重复装载、创建某些资源,我们可以将部分资源放在初始化的时候进行。这样可以大幅度提高项目的整体性能,同时配合厂商所提供的预留能力,可以基本上杜绝函数冷启动带来的负面影响。

总结

近年来,人工智能与云计算的发展是突飞猛进,在Serverless架构中,如何运行传统的人工智能项目已经逐渐成为很多人所需要了解的事情了。本文是通过一个已有的依赖库(ImageAI)实现一个图像分类和预测的接口。通过这个例子,其实是有几个事情可以被明确的:

  • Serverless架构可以运行人工智能相关项目
  • Serverless可以很好的兼容Tensorflow等机器学习/深度学习的工具
  • 虽然说函数计算本身有空间限制,但是实际上增加了硬盘挂在能力之后,函数计算本身的能力将会得到大幅度的拓展

当然,本文也算是抛砖引玉,希望读者在本文之后,可以发挥自己的想象,将更多的AI项目与Serverless架构进行进一步结合

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
1月前
|
运维 监控 Serverless
揭秘云计算中的Serverless架构:优势、挑战与实践
揭秘云计算中的Serverless架构:优势、挑战与实践
|
11天前
|
弹性计算 运维 Serverless
卓越效能,极简运维,体验Serverless高可用架构,完成任务可领取转轮日历!
卓越效能,极简运维,体验Serverless高可用架构,完成任务可领取转轮日历!
|
22天前
|
监控 Serverless 云计算
探索Serverless架构:开发实践与优化策略
本文深入探讨了Serverless架构的核心概念、开发实践及优化策略。Serverless让开发者无需管理服务器即可运行代码,具有成本效益、高可扩展性和提升开发效率等优势。文章还详细介绍了函数设计、安全性、监控及性能和成本优化的最佳实践。
|
5天前
|
弹性计算 Cloud Native Serverless
阿里云 SAE 邀您参加 Serverless 高可用架构挑战赛,赢取精美礼品
阿里云 SAE 邀您参加 Serverless 高可用架构挑战赛,赢取精美礼品。
|
2月前
|
监控 Serverless 数据库
探索 Serverless 架构:云计算的新浪潮
【10月更文挑战第18天】Serverless架构,即无服务器架构,是一种新兴的云计算模式,让开发者无需管理服务器即可构建和运行应用。本文探讨了其核心概念、优势、挑战及最佳实践,强调了按需付费、自动扩展和开发效率等优点,同时也指出了冷启动、状态管理和调试监控等挑战。
|
1月前
|
机器学习/深度学习 监控 Serverless
探索Serverless架构:云计算的新前沿
【10月更文挑战第26天】本文探讨了Serverless架构作为新兴的云计算范式,如何改变应用的构建和部署方式。文章介绍了Serverless的核心概念、优势和挑战,并提供了开发技巧和实用工具,帮助开发者更好地理解和利用这一技术。
|
1月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
88 1
|
1月前
|
监控 Serverless 数据库
探索 Serverless 架构:云计算的新浪潮
【10月更文挑战第23天】Serverless 架构是一种新兴的云计算范式,允许开发者构建和运行应用程序而无需管理服务器。本文深入探讨了 Serverless 的核心概念、优势、挑战及最佳实践,帮助开发者更好地理解和应用这一技术。
|
1月前
|
监控 安全 Serverless
"揭秘D2终端大会热点技术:Serverless架构最佳实践全解析,让你的开发效率翻倍,迈向技术新高峰!"
【10月更文挑战第23天】D2终端大会汇聚了众多前沿技术,其中Serverless架构备受瞩目。它让开发者无需关注服务器管理,专注于业务逻辑,提高开发效率。本文介绍了选择合适平台、设计合理函数架构、优化性能及安全监控的最佳实践,助力开发者充分挖掘Serverless潜力,推动技术发展。
68 1
|
1月前
|
运维 监控 Serverless
Serverless架构在图像处理等计算密集型应用中展现了显著的优势
Serverless架构在图像处理等计算密集型应用中展现了显著的优势
37 1

热门文章

最新文章

相关产品

  • 函数计算
  • 下一篇
    DataWorks